Jump to content

List of sequenced plant genomes

From Wikipedia, the free encyclopedia

This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.

See also List of sequenced algae genomes.

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Anthoceros angustus Bryophytes Early diverging land plant
Ceratodon purpureus Bryophytes Early diverging land plant
Fontinalis antipyretica (greater water-moss) Bryophytes Aquatic moss 385.2 Mbp 16,538 BGI 2020[1] BGISEQ-500 & 10X, scaffold N50 45.8 Kbp
Marchantia polymorpha Bryophytes Early diverging land plant 225.8 Mb 19,138 2017[2]
Physcomitrella patens ssp. patens str. Gransden 2004 Bryophytes Early diverging land plant 462.3 Mbp 35,938 2008[3]
Pleurozium schreberi (feather moss) Bryophytes Ubiquitous moss species 318 Mbp 15,992 2019[4]
Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Isoetes sinensis Lycopodiophyta First aquatic Quillwort 2.131 GB 57,303 2023[5] Scaffold N50 = 86 Mb
Selaginella moellendorffii Lycopodiophyta Model organism 106 Mb 22,285 2011[6][7] scaffold N50 = 1.7 Mb
Selaginella lepidophylla Lycopodiophyta Desiccation tolerance 122 Mb 27,204 2018[8] contig N50 = 163 kb
Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Azolla filiculoides Polypodiophyta Fern 0.75 Gb 20,201 2018[9]
Salvinia cucullata Polypodiophyta Fern 0.26 Gb 19,914 2018[9]
Ceratopteris richardii Polypodiophyta Model organism 7.5 Gb 36,857 2019 (v1.1),[10] 2021 (v2.1)[11] Partial assembly consisting of 7.5 Gb/11.2 Gb, arranged in 39 chromosomes
Alsophila spinulosa Polypodiophyta Tree Fern 6.23 Gb 67,831 2022[12]
Organism strain Division Relevance Genome size Number of genes predicted No of chromosomes Organization Year of completion Assembly status
Cycas panzhihuaensis (Dukou sago palm) Cycadophyta Rare and vulnerable species of cycad 10.5 Gb 2022[13]
Picea abies (Norway spruce) Pinales Timber, tonewood, ornamental such as Christmas tree 19.6 Gb 26,359[14] 12 Umeå Plant Science Centre / SciLifeLab, Sweden 2013[15]
Picea glauca (White spruce) Pinales Timber, Pulp 20.8 Gb 14,462[14] 12 Institutional Collaboration 2013[16][17]
Pinus taeda (Loblolly pine) Pinales Timber 20.15 Gb 9,024[14] 12 2014[18][19][20] N50 scaffold size: 66.9 kbp
Pinus lambertiana (Sugar pine) Pinales Timber; with the largest genomes among the pines;

the largest pine species

31 Gb 13,936 12 2016[14] 61.5X sequence coverage, platforms used:

Hiseq 2000, Hiseq 2500, GAIIx, MiSeq

Ginkgo biloba Ginkgoales 11.75 Gb 41,840 2016[21] N50 scaffold size: 48.2 kbp
Pseudotsuga menziesii Pinales 16 Gb 54,830 13 2017[22] N50 scaffold size : 340.7 kbp
Gnetum monatum Gnetales 4.07 Gb 27,491 2018[23]
Larix sibirica Pinales 12.34 Gbp 2019[24] scaffold N50 of 6440 bp
Abies alba Pinales 18.16 Gb 94,205 2019[25] scaffold N50 of 14,051 bp
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Amborella trichopoda Amborellaceae Basal angiosperm 2013[26][27]

Chlorantales

[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Chloranthus spicatus (Thunb.) Makino,[28] (Pearl Orchid) Chlorantaceae 2021[29] saffold N50 of 191.37 Mb

Magnoliales

Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Annona muricata Annonaceae Commercially grown fruit, medicinal applications 799.11 Mb 23,375 Institute for Biodiversity and Environmental Research (UBD)

Alliance for Conservation Tree Genomics

Biodiversity Genomics Team

2021[30] PacBio and Illumina short‐reads, in combination with 10× Genomics and Bionano data (v1). A total of 949 scaffolds assembled to a final size of 656.77 Mb, with a scaffold N50 of 3.43 Mb (v1), and then further improved to seven pseudo‐chromosomes using Hi‐C sequencing data (v2; scaffold N50: 93.2 Mb, total size in chromosomes: 639.6 Mb).
Salix arbutifolia
(syn. Chosenia arbutifolia)
Salicaceae Seriously endangered relic species 338.93 Mb 33,229 2022[31] Contig N50 of 1.68 Mb
Cinnamomum kanehirae (Stout camphor tree) Lauraceae 730.7 Mb 2019[32]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Macadamia integrifolia HAES 741 (Macadamia nut) Proteaceae Commercially grown nut 745 Mb 34,274 2020[33] N50 413 kb
Macadamia jansenii Proteaceae Rare relative of macademia nut 750 Mbp 2020[34] Compared Nanopore, Illumina and BGI stLRF data
Nelumbo nucifera (sacred lotus) Nelumbonaceae Basal eudicot 929 Mbp 2013[35] contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Aquilegia coerulea Ranunculaceae Basal eudicot Unpublished[36]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Trochodendron aralioides (Wheel tree) Trochodendrales Basal eudicot having secondary xylem without vessel elements 1.614 Gb 35,328 Guangxi University 2019[37] 19 scaffolds corresponding to 19 chromosomes
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Beta vulgaris (sugar beet) Chenopodiaceae Crop plant 714–758 Mbp 27,421 2013[38]
Chenopodium quinoa Chenopodiaceae Crop plant 1.39–1.50 Gb 44,776 2017[39] 3,486 scaffolds, scaffold N50 of 3.84 Mb, 90% of the assembled genome is contained in 439 scaffolds[39]
Amaranthus hypocondriacus Amaranthaceae Crop plant 403.9 Mb 23,847 2016[40] 16 large scaffolds from 16.9 to 38.1 Mb. N50 and L50 of the assembly was 24.4 Mb and 7, respectively.[41]
Carnegiea gigantea Cactaceae Wild plant 1.40 Gb 28,292 2017[42] 57,409 scaffolds, scaffold N50 of 61.5 kb[42]
Nepenthes mirabilis Nepenthes Carnivorous Plant 691 Mb 42,961 2023[43] 159,555 contigs/scaffolds and N50 of 10,307 bp
Suaeda aralocaspica Amaranthaceae Performs complete C4 photosynthesis within individual cells (SCC4) 467 Mb 29,604 ABLife Inc. 2019[44] 4,033 scaffolds, scaffold N50 length of 1.83 Mb
Simmondsia chinensis (jojoba) Simmondsiaceae Oilseed Crop 887 Mb 23,490 2020[45] 994 scaffolds, scaffold N50 length of 5.2 Mb

Drosera capensis

Droseraceae Carnivorous Plant 263.79 Mb 2016[46] 12,713 scaffolds[46]
Tamarix chinensis (Chinese tamarisk) Tamaricaceae Margin tree 1.32 Gb 2023[47]
Organism strain Family Relevance Genome size Number of genes predicted No of chromosomes Organization Year of completion Assembly status
Bretschneidera sinensis Akaniaceae endangered relic tree species 1.21 Gb 45,839 2022[48]
Sclerocarya birrea

(Marula)

Anacardiaceae Used for food 18,397 2018[49][50]
Begonia masoniana (Iron cross begonia) Begoniaceae Flower 799.83 Mb 2022[51]
Begonia peltatifolia (Rex begonia) Begoniaceae Flower 331.75 Mb 2022[51]
Betula pendula (silver birch) Betulaceae Boreal forest tree, model for forest biotechnology 435 Mbp[52] 28,399 14 University of Helsinki 2017[52] 454/Illumina/PacBio. Assembly size 435 Mbp. Contig N50: 48,209 bp, scaffold N50: 239,796 bp. 89% of the assembly mapped to 14 pseudomolecules. Additionally 150 birch individuals sequenced.
Betula platyphylla (Japanese white birch) Betulaceae Pioneer hardwood tree species 430 Mbp 2021[53] contig N50 = 751 kbp
Betula nana (dwarf birch) Betulaceae Arctic shrub 450 Mbp QMUL/SBCS 2013[54]
Corylus heterophylla Fisch (Asian hazel) Betulaceae Nut tree used for food 370.75 Mbp 27,591 11 2021[55] Nanopore/Hi-C chromosome scale. Contig N50 and scaffold N50 sizes of 2.07 and 31.33  Mb, respectively
Corylus mandshurica Betulaceae Hazel used for breeding 367.67 Mb 28,409 11 2021[56]
Aethionema arabicum Brassicaceae Comparative analysis of crucifer genomes 2013[57]
Arabidopsis lyrata ssp. lyrata strain MN47 Brassicaceae Model plant 206.7 Mbp 32,670[58] 8 2011[58] 8.3X sequence coverage, analyzed on ABI 3730XL capillary sequencers
Arabidopsis thaliana Ecotype:Columbia Brassicaceae Model plant 135 Mbp 27,655[59] 5 AGI 2000[60]
Barbarea vulgaris

G-type

Brassicaceae Model plant for specialised metabolites and plant defenses 167.7 Mbp 25,350 8 2017[61] 66.5 X coverage with Illumina GA II technology
Brassica rapa ssp. pekinensis (Chinese cabbage) accession Chiifu-401-42 Brassicaceae Assorted crops and model organism 485 Mbp 41,174 (has undergone genome triplication) 10 The Brassica rapa Genome Sequencing Project Consortium 2011[62] 72X coverage of paired short read sequences generated by Illumina GA II technology
Brassica napus (Oilseed rape or rapeseed) European winter oilseed cultivar 'Darmor-bzh' Brassicaceae Crops 1130 Mbp 101,040 19 Institutional Collaboration 2014[63] 454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequencing. Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence.
Capsella rubella Brassicaceae Close relative of Arabidopsis thaliana 130 Mbp 26,521 JGI 2013?[64] 2013[65]
Cardamine hirsuta (hairy bittercress) strain 'Oxford' Brassicaceae A model system for studies in evolution of plant development 198 Mbp 29,458 8 Max Planck Institute for Plant Breeding Research, Köln, Germany 2016[66] Shotgun sequencing strategy, combining paired end reads (197× assembled sequence coverage) and mate pair reads (66× assembled) from Illumina HiSeq (a total of 52 Gbp raw reads).
Eruca sativa (salad rocket) Brassicaceae Used for food 851 Mbp 45,438 University of Reading 2020[67] Illumina MiSeq and HiSeq2500. PCR free paired end and long mate pair sequencing and assembly. Illumina HiSeq transcriptome sequencing (125/150 bp paired end reads).
Erysimum cheiranthoides (wormseed wallflower) strain 'Elbtalaue' Brassicaceae Model plant for studying defensive chemistry, including cardiac glycosides 175 Mbp 29,947 8 Boyce Thompson Institute, Ithaca, NY 2020[68][69] 39.5 Gb PacBio sequences (average length 10,603 bp), one lane Illumina MiSeq sequencing (2 x 250 bp paired end), Phase Genomics Hi-C scaffolding, PacBio and Illumina transcriptome sequencing
Eutrema salsugineum Brassicaceae A relative of arabidopsis with high salt tolerance 240 Mbp 26,351 JGI 2013[70]
Eutrema parvulum Brassicaceae Comparative analysis of crucifer genomes 2013[57]
Leavenworthia alabamica Brassicaceae Comparative analysis of crucifer genomes 2013[57]
Sisymbrium irio Brassicaceae Comparative analysis of crucifer genomes 2013[57]
Thellungiella parvula Brassicaceae A relative of arabidopsis with high salt tolerance 2011[71]
Cannabis sativa (hemp) Cannabaceae Hemp and marijuana production ca 820 Mbp 30,074 based on transcriptome assembly and clustering 2011[72] Illumina/454

scaffold N50 16.2 Kbp

Capparis spinosa var. herbacea (Caper) Capparaceae Crop 274.53 Mb 21,577 2022[73] contig N50 9.36 Mb
Carica papaya (papaya) Caricaceae Fruit crop 372 Mbp 28,629 2008[74] contig N50 11kbp

scaffold N50

1Mbp

total coverage ~3x (Sanger)

92.1% unigenes mapped

235Mbp anchored (of this 161Mbp also oriented)

Casuarina equisetifolia

(Australian Pine)

Casuarinaceae bonsai subject 300 Mbp 29,827 2018[75]
Tripterygium wilfordii (Lei gong teng) Celastraceae Chinese medicine crop 340.12 Mbp 31,593 2021[76] Contig N50 3.09 Mbp
Cleome gynandra

(African cabbage)

Cleomaceae C4 leafy vegetable and medicinal plant 740 Mb 30,933 2023[77] N50 of 42 Mb
Kalanchoë fedtschenkoi Raym.-Hamet & H. PerrierKalanchoe Crassulaceae Molecular genetic model for obligate CAM species in the eudicots 256 Mbp 30,964 34 2017[78] ~70× paired-end reads and ~37× mate-pair reads generated using an Illumina MiSeq platform.
Rhodiola crenulata (Tibetan medicinal herb) Crassulaceae Uses for medicine and food 344.5 Mb 35,517 2017[79]
Citrullus lanatus (watermelon) Cucurbitaceae Vegetable crop ca 425 Mbp 23,440 BGI 2012[80] Illumina

coverage 108.6x

contig N50 26.38 kbp

Scaffold N50 2.38 Mbp

genome covered 83.2%

~97% ESTs mapped

Cucumis melo (Muskmelon) DHL92 Cucurbitaceae Vegetable crop 450 Mbp 27,427 2012[81] 454

13.5x coverage

contig N50: 18.1kbp

scaffold N50: 4.677 Mbp

WGS

Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 Cucurbitaceae Vegetable crop 350 Mbp (Kmer depth) 367 Mbp (flow cytometry) 26,682 2009[82] contig N50 19.8kbp

scaffold N50 1,140kbp

total coverage ~72.2 (Sanger + Ilumina)

96.8% unigenes mapped

72.8% of the genome anchored

Cucurbita argyrosperma subsp. argyrosperma

(Silver-seed gourd)

Cucurbitaceae Seed and fruit crop 228.8 Mbp 27,998 20 National Autonomous University of Mexico 2019,[83] updated in 2021 contig N50 447 kbp

scaffold N50 11.6 Mbp

total coverage: 120x Illumina (HiSeq2000 and MiSeq) + 31x PacBio RSII

Cucurbita argyrosperma subsp. sororia

(wild gourd)

Cucurbitaceae Wild relative of the silver-seed gourd 255.2 Mbp 30,592 20 National Autonomous University of Mexico 2021[84] contig N50 1.2 Mbp

scaffold N50 12.1 Mbp

total coverage: 213x Illumina HiSeq4000 + 75.4x PacBio Sequel

Siraitia grosvenorii

(Monk fruit)

Cucurbitaceae Chinese medicine/sweetener 456.5 Mbp 30,565 Anhui Agricultural University 2018[85]
Hippophae rhamnoides (sea-buckthorn) Elaeagnaceae used in food and cosmetics 730 Mbp 30,812 2022[86]
Hevea brasiliensis (rubber tree) Euphorbiaceae the most economically important member of the genus Hevea 2013[87]
Jatropha curcas Palawan Euphorbiaceae bio-diesel crop 2011[88]
Manihot esculenta (Cassava) Euphorbiaceae Humanitarian importance ~760 Mb 30,666 JGI 2012[89]
Ricinus communis (Castor bean) Euphorbiaceae Oilseed crop 320 Mbp 31,237 JCVI 2010[90] Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp
Ricinus communis L. (Wild Castor) Euphorbiaceae one of the most important oil crops worldwide ~318.13 Mb 30,066 National Key R&D Program of China, the National Natural Science Foundation of China, the Guangdong Basic and Applied Basic Research Foundation, China, and the Shenzhen Science and Technology Program, China 2021[91] genome size of 316 Mb, a scaffold N50 of 31.93 Mb, and a contig N50 of 8.96 Mb
Ammopiptanthus nanus Fabaceae Only genus of evergreen broadleaf shrub 889 Mb 37,188 2018[92]
Cajanus cajan (Pigeon pea) var. Asha Fabaceae Model legume 2012[93][94]
Arachis duranensis (A genome diploid wild peanut) accession V14167 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[95] Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp
Amphicarpaea edgeworthii (Chinese hog-peanut) Fabaceae produces both aerial and subterranean fruits 299-Mb 27 899 Taishan Scholar Program, National Natural Science Foundation of China, the Innovation Program of SAAS 2021[96]
Arachis ipaensis (B genome diploid wild peanut) accession K30076 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[95] Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp
Cicer arietinum (chickpea) Fabaceae filling 2013[97]
Cicer arietinum L. (chickpea) Fabaceae 2013[98]
Dalbergia odorifera (fragrant rosewood) Fabaceae Wood product (heartwood) and folk medicine 653 Mb 30,310 10 Chinese Academy of Forestry 2020[99] Contig N50: 5.92Mb

Scaffold N50: 56.1 6Mb

Faidherbia albida

(Apple-Ring Acacia)

Fabaceae Importante in the Sahel for raising bees 28,979 2018[100][49]
Glycine max (soybean) var. Williams 82 Fabaceae Protein and oil crop 1115 Mbp 46,430 2010[101] Contig N50:189.4kbp

Scaffold N50:47.8Mbp

Sanger coverage ~8x

WGS

955.1 Mbp assembled

Lablab purpureus

(Hyacinth Bean)

Fabaceae Crop for human consumption 20,946 2018[49][102]
Lotus japonicus (Bird's-foot Trefoil) Fabaceae Model legume 2008[103]
Medicago truncatula (Barrel Medic) Fabaceae Model legume 2011[104]
Melilotus officinalis (sweet yellow clover) Fabaceae Forage and Chinese medicine 976.27 Mbp 50,022 2023[105]
Phaseolus vulgaris (common bean) Fabaceae Model bean 520 Mbp 31,638 JGI 2013?[106]
Prosopis cineraria (Ghaf) Fabaceae Desert mimosoid legume 691 Mbp 55,325 2023[107]
Vicia faba L. (Faba bean) Fabaceae Nature (journal) 2023[108]
Vicia villosa (hairy vetch) Fabaceae Forage and cover crop 2.03 Gbp 2023[109]
Vigna hirtella (Wild vigna) Fabaceae Wild legume 474.1 Mbp 2023[108][110]
Vigna reflexo-pilosa (Créole bean) Fabaceae Tetraploid wild legume 998.7 Mbp 2023[111][112]
Vigna subterranea

(Bambara Groundnut)

Fabaceae similar to peanuts 31,707 2018[113][49]
Vigna trinervia Fabaceae 498,7 Mbp 2023[111]
Trifolium pratense L. (Red clover) Fabaceae often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.[114] 2022[115]
Vicia sativa L. (Common vetch) Fabaceae grain to livestock 2022[116]
Macrotyloma uniflorum (Horse gram) Fabaceae horsefeed 2021[117]
Castanea mollissima (Chinese chestnut) Fagaceae cultivated nut 785.53 Mb 36,479 Beijing University of Agriculture 2019[118] Illumina: ~42.7×

PacBio: ~87× contig N50: 944,000bp

Quercus robur (European oak) Fagaceae Pedunculate oak,

large diversity, somatic mutation studies

736 Mb 25,808 12 Biogeco lab, Inrae, University of Bordeaux 2018[119] https://www.oakgenome.fr/?page_id=587
Carya illinoinensis

Pecan

Junglandaceae snacks in various recipes 651.31 Mb 2019[120]
Juglans mandshurica Maxim. (Manchurian walnut) Junglandaceae cultivated nut 548.7 Mb 2022[121]
Juglans regia (Persian walnut) Junglandaceae cultivated nut 540 Mb Chinese Academy of Forestry 2020[122]
Juglans sigillata (Iron walnut) Junglandaceae cultivated nut 536.50 Mb Nanjing Forestry University 2020[123] Illumina+Nanopore+bionano

scaffold N50: 16.43 Mb, contig N50: 4.34 Mb

Linum usitatissimum (flax) Linaceae Crop ~350 Mbp 43,384 BGI et al. 2012[124]
Bombax ceiba

(red silk cotton tree)

Malvaceae capsules with white fibre like cotton 895 Mb 2018[125]
Durio zibethinus (Durian) Malvaceae Tropical fruit tree ~738 Mbp 2017[126]
Gossypium raimondii Malvaceae One of the putative progenitor species of tetraploid cotton 2013?[127]
Theobroma cacao (cocoa tree) Malvaceae Flavouring crop 2010[128][129]
Theobroma cacao (cocoa tree) cv. Matina 1-6 Malvaceae Most widely cultivated cacao type 2013[130]
Theobroma cacao (200 accessions) Malvaceae domestication history of cacao 2018[131]
Azadirachta indica (neem) Meliaceae Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine 364 Mbp ~20000 GANIT Labs Archived 2014-01-08 at the Wayback Machine 2012[132] and 2011[133] Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed
Artocarpus nanchuanensis (Bayberry) Moraceae Extremely endangered fruit tree 769.44 Mbp 39,596 28 2022[134]
Moringa oleifera

(Horseradish Tree)

Moringaceae traditional herbal medicine 18,451 2018[135][49]
Eucalyptus caleyi (Caley's ironbark) Myrtaceae 589.32 Mb 2024[136]
Eucalyptus urophylla (Timor white gum) Myrtaceae Fibre and timber crop 544.5 Mb 2023[137]
Eucalyptus grandis (Rose gum) Myrtaceae Fibre and timber crop 691.43 Mb 2011[138][137]
Eucalyptus lansdowneana (crimson mallee) Myrtaceae 633.52 Mb 2024[136]
Eucalyptus marginata (Jarrah) Myrtaceae 512.89 Mb 2024[136]
Eucalyptus pauciflora (Snow gum) Myrtaceae Fibre and timber crop 594.87 Mb ANU 2020[139] Nanopore + Illumina; contig N50: 3.23 Mb
Melaleuca alternifolia (tea tree) Myrtaceae terpene-rich essential oil with therapeutic and cosmetic uses around the world 362 Mb 37,226 Gigabyte, NCBI GenBank, GigaScience 2021[140] 3128 scaffolds with a total length of 362 Mb (N50 = 1.9 Mb)
Averrhoa carambola (Star Fruit) Oxalidales fruit crop 335.49 Mb 2020[141]
Carya cathayensis (Chinese hickory) Rosaceae fruit crop 706.43 Mb 2019[120]
Eriobotrya japonica (Loquat) Rosaceae Fruit tree 760.1 Mb 45,743 Shanghai Academy of Agricultural Sciences 2020[142] Illumina+Nanopore+Hi-C

17 chromosomes, scaffold N50: 39.7 Mb

Fragaria vesca (wild strawberry) Rosaceae Fruit crop 240 Mbp 34,809 2011[143] scaffold N50: 1.3 Mbp

454/Illumina/solid

39x coverage

WGS

Gillenia trifoliata Rosaceae Apple Tribe 320.17±4.22 Mb 26,166 18 2021[144] Number of scaffolds(>2kb): 789, scaffold N50: 30,093,771 bp, Contig N50 (bp): 828,523
Malus domestica (apple) "Golden Delicious" Rosaceae Fruit crop ~742.3 Mbp 57,386 2010[145] contig N50 13.4 (kbp??)

scaffold N50 1,542.7 (kbp??)

total coverage ~16.9x (Sanger + 454)

71.2% anchored

Prunus amygdalus (almond) Rosaceae Fruit crop 2013?[146]
Prunus avium (sweet cherry) cv. Stella Rosaceae Fruit crop 2013?[146]
Prunus mume (Chinese plum or Japanese apricot) Rosaceae Fruit crop 2012[147]
Prunus persica (peach) Rosaceae Fruit crop 265 Mbp 27,852 2013[148] Sanger coverage:8.47x

WGS

ca 99% ESTs mapped

215.9 Mbp in pseudomolecules

Prunus salicina (Japanese plum) Rosaceae Fruit crop 284.2 Mbp 24,448 8 2020[149] PacBio/Hi-C, with contig N50 of 1.78 Mb and scaffold N50 of 32.32 Mb.
Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli Rosaceae Fruit crop 2012[150]
Pyrus communis (European pear) cv. Doyenne du Comice Rosaceae Fruit crop 2013?[146]
Rosa roxburghii (Chestnut Rose) Rosaceae Fruit crop 504 Mbp 2023[151]
Rosa sterilis Rosaceae Fruit crop 981.2 Mb 2023[152]
Rubus occidentalis

(Black raspberry)

Rosaceae Fruit crop 290 Mbp 2018[153]
Citrus clementina (Clementine) Rutaceae Fruit crop 2013?[154]
Citrus sinensis (Sweet orange) Rutaceae Fruit crop 2013?,[154] 2013[155]
Clausena lansium (Wampee) Rutaceae Fruit crop 2021[156]
Populus trichocarpa (poplar) Salicaceae Carbon sequestration, model tree, timber 510 Mbp (cytogenetic) 485 Mbp (coverage) 73,013 [Phytozome] 2006[157] Scaffold N50: 19.5 Mbp

Contig N50:552.8 Kbp [phytozome]

WGS

>=95 % cDNA found

Populus pruinosa

(desert tree)

Salicaceae farming and ranching 479.3 Mbp 35,131 2017[158]
Acer truncatum (purpleblow maple) Sapindaceae Tree producing nervonic acid 633.28 Mb 28,438 2020[159] contig N50 = 773.17 Kb; scaffold N50 = 46.36 Mb
Acer yangbiense Sapindaceae Plant species with extremely small populations 110 Gb 28,320 13 2019[160] scaffold N50 = 45 Mb
Dimocarpus longan (Longan) Sapindaceae Fruit crop 471.88 Mb 2017[161]
Xanthoceras sorbifolium Bunge (Yellowhorn) Sapindaceae Fruit Crop 504.2 Mb 24,672 2019[162][163]
Aquilaria sinensis (Agarwood) Thymelaeaceae Fragrant wood 726.5 Mb 29,203 2020[164] Illumina+nanopore+Hi-C, scaffold N50: 88.78 Mb
Vitis vinifera (grape) genotype PN40024 Vitaceae fruit crop 2007[165]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Asclepias syriaca, (common milkweed) Apocynaceae Exudes milky latex 420 Mbp 14,474 Oregon State University 2019[166] 80.4× depth

N50 = 3,415 bp

Erigeron breviscapus (Chinese herbal fleabane) Asteraceae Chinese medicine 37,505 2017[167]
Helianthus annuus (sunflower) Asteraceae Oil crop 3.6 Gbb 52,232 INRA and The Sunflower Genome Database[168] 2017[169] N50 contig: 13.7 kb
Lactuca sativa (lettuce) Asteraceae Vegetable crop 2.5 Gbb 38,919 2017[170] N50 contig: 12 kb; N50 scaffold: 476 kb
Handroanthus impetiginosus, Bignoniaceae

(Pink Ipê)

Bignoniaceae Common tree 503.7 Mb 31,668 2017[171]
Diospyros oleifera Cheng (Oil persimmon) Ebenaceae Fruit tree 849.53 Mb 28,580 Zhejiang University & Chinese Academy of Forestry 2019[172] & 2020[173] Two genomes both chromosome scale & assigned to 15 pseudochromosomes
Salvia miltiorrhiza Bunge

(Chinese red sage)

Lamiaceae TCM treatment for COPD 641 Mb 34,598 2015[174]
Callicarpa americana (American beautyberry) Lamiaceae Ornamental shrub and insect-repellent 506 Mb 32,164 Michigan State University 2020[175] 17 pseudomolecules Contig N50: 7.5Mb Scaffold N50: and 29.0 Mb
Mentha x piperita (Peppermint) Lamiaceae Oil crop 353 Mb 35,597 Oregon State University 2017[176]
Tectona grandis

(Teak)

Lamiaceae Durability and water resistance 31,168 2019[177]
Utricularia gibba (humped bladderwort) Lentibulariaceae model system for studying genome size evolution; a carnivorous plant 81.87 Mb 28,494 LANGEBIO, CINVESTAV 2013[178] Scaffold N50: 80.839 Kb
Camptotheca acuminata Decne

(Chinese happy tree)

Nyssaceae chemical drugs for cancer treatment 403 Mb 31,825 2017[179]
Davidia involucrata Baill (Dove tree) Nyssaceae Living fossil 1,169 Mb 42,554 2020[180]
Mimulus guttatus Phrymaceae model system for studying ecological and evolutionary genetics ca 430 Mbp 26,718 JGI 2013?[181] Scaffold N50 = 1.1 Mbp

Contig N50 = 45.5 Kbp

Primula vulgaris (Common primrose) Primulaceae Used for cooking 474 Mb 2018[182]
Cinchona pubescens Vahl. (Fever tree) Rubiaceae Anti-malarial 1.1 Gb 2022[183]
Solanum lycopersicum (tomato) cv. Heinz 1706 Solanaceae Food crop ca 900 Mbp 34,727 SGN 2011[184] 2012[185] Sanger/454/Illumina/Solid

Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented )

over 98% ESTs mappable

Solanum aethiopicum (Ethiopian eggplant) Solanaceae Food crop 1.02 Gbp 34,906 BGI 2019[186] Illumina

scaffold N50: 516,100bp

contig N50: 25,200 bp

~109× coverage

Solanum pimpinellifolium (Currant Tomato) Solanaceae closest wild relative to tomato 2012[185] Illumina

contig N50: 5100bp

~40x coverage

Solanum tuberosum (Potato) Solanaceae Food crop 726 Mbp[187] 39,031 Potato Genome Sequencing Consortium (PGSC) 2011[188][189] Sanger/454/Illumina

79.2x coverage

contig N50: 31,429bp

scaffold N50: 1,318,511bp

Solanum commersonii (commerson's nightshade) Solanaceae Wild potato relative 838 Mbp kmer (840 Mbp) 37,662 UNINA, UMN, UNIVR, Sequentia Biotech, CGR 2015[190] Illumina

105x coverage

contig N50: 6,506bp

scaffold N50: 44,298bp

Cuscuta campestris

(field dodder)

Solanaceae model system for parasitic plants 556 Mbp kmer (581 Mbp) 44,303 RWTH Aachen University, Research Center Jülich, University of Tromsø, Helmholtz Zentrum München, Technical University Munich, University of Vienna 2018[191] scaffold N50 = 1.38 Mbp
Cuscuta australis (Southern dodder) Solanaceae model system for parasitic plants 265 Mbp

kmer (273 Mbp)

19,671 Kunming Institute of Botany, Chinese Academy of Sciences 2018[192] scaffold N50 = 5.95 Mbp

contig N50 = 3.63 Mbp

Nicotiana benthamiana Solanaceae Close relative of tobacco ca 3 Gbp 2012[193] Illumina

63x coverage

contig N50: 16,480bp

scaffold N50:89,778bp

>93% unigenes found

Nicotiana sylvestris (Tobacco plant) Solanaceae model system for studies of terpenoid production 2.636 Gbp Philip Morris International 2013[194] 94x coverage

scaffold N50: 79.7 kbp

194kbp superscaffolds using physical Nicotiana map

Nicotiana tomentosiformis Solanaceae Tobacco progenitor 2.682 Gb Philip Morris International 2013[194] 146x coverage

scaffold N50: 82.6 kb

166kbp superscaffolds using physical Nicotiana map

Capsicum annuum (Pepper)

(a) cv. CM334 (b) cv. Zunla-1

Solanaceae Food crop ~3.48 Gbp (a) 34,903

(b) 35,336

(a) 2014[195]

(b) 2014[196]

N50 contig: (a) 30.0 kb (b) 55.4 kb

N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb

Capsicum annuum var. glabriusculum (Chiltepin) Solanaceae Progenitor of cultivated pepper ~3.48 Gbp 34,476 2014[196] N50 contig: 52.2 kb

N50 scaffold: 0.45 Mb

Petunia hybrida Solanaceae Economically important flower 2011[197]
Grasses
[edit]
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Setaria italica (Foxtail millet) Poaceae Model of C4 metabolism 2012[198]
Aegilops tauschii (Tausch's goatgrass) Poaceae bread wheat D-genome progenitor ca 4.36 Gb 39,622 2017[199] pseudomolecule assembly
Bothriochloa decipiens

(Australian bluestem grass)

Poaceae BCD clade and polyploid 1,218.22 Mb 60,652 2023[200] Scaffold N50: 42.637 Mb
Brachypodium distachyon (purple false brome) Poaceae Model monocot 2010[201]
Coix lacryma-jobi L. (Job's tears) Poaceae Crop & used in medicine & ornamentation 1.619 Gb 39,629 2019[202]
Dichanthelium oligosanthes (Heller's rosette grass) Poaceae C3 grass closely related to C4 species 960 Mb DDPSC 2016[203]
Digitaria exilis (white fonio) Poaceae African orphan crop 761 Mb ICRISAT, UC Davis 2021[204] 3,329 contigs. N50: 1.73 Mb; L50, 126)
Eragrostis curvula Poaceae good for livestock 602 Mb 56,469 2019[205]
Hordeum vulgare (barley) Poaceae Model of ecological adoption IBSC 2012,[206] 2017[207]
Oryza brachyantha (wild rice) Poaceae Disease resistant wild relative of rice 2013[208]
Oryza glaberrima (African rice) var CG14 Poaceae West-African species of rice 2010[209]
Oryza rufipogon (red rice) Poaceae Ancestor to Oryza sativa 406 Mb 37,071 SIBS 2012[210] Illumina HiSeq2000

100x coverage

Oryza sativa (long grain rice) ssp indica Poaceae Crop and model cereal 430 Mb[211] International Rice Genome Sequencing Project (IRGSP) 2002[212]
Oryza sativa (Short grain rice) ssp japonica Poaceae Crop and model cereal 430 Mb International Rice Genome Sequencing Project (IRGSP) 2002[213]
Panicum virgatum (switchgrass) Poaceae biofuel 2013?[214]
Poa annua (annual bluegrass) Poaceae weed 3.56 Gb 76,420 USDA ARS, Forage and Range Research 2023[215] unphased (haploid) pseudomolecules
Poa infirma (weak bluegrass) Poaceae diploid progenitor to Poa annua 2.25 Gb 39,420 Penn State University 2023[216] unphased (haploid) pseudomolecules
Poa pratensis (Kentucky bluegrass) Poaceae Lawn grass 6.09 Gbp 2023[217] Scaffold N50: 65.1 Mbp
Poa supina (supine bluegrass) Poaceae diploid progenitor to Poa annua 1.27 Gb 37,935 Penn State University 2023[216] unphased (haploid) pseudomolecules
Phyllostachys edulis (moso bamboo) Poaceae Bamboo textile industry 603.3 Mb 25,225 2013[218] 2018[219]
Sorghum bicolor genotype BTx623 Poaceae Crop ca 730 Mb 34,496 2009[220] contig N50:195.4kbp

scaffold N50: 62.4Mbp

Sanger, 8.5x coverage

WGS

Triticum aestivum (bread wheat) Poaceae 20% of global nutrition 14.5 Gb 107,891 IWGSC 2018[221] pseudomolecule assembly
Triticum urartu Poaceae Bread wheat A-genome progenitor ca 4.94 Gb BGI 2013[222] Non-repetitive sequence assembled

Illumina WGS

Zea mays (maize) ssp mays B73 Poaceae Cereal crop 2.3 Gb 39,656[223] 2009[224] contig N50 40kbp

scaffold N50: 76kbp

Sanger, 4-6x coverage per BAC

Pennisetum glaucum (pearl millet) Poaceae Sub-Saharan and Sahelian millet species ~1,79 Gb 38,579 2017[225] WGS and bacterial artificial chromosome (BAC) sequencing
Other non-grasses
[edit]
Organism strain Family Relevance Genome size Number of genes predicted No of chromosomes Organization Year of completion Assembly status
Ananas bracteatus accession CB5 Bromeliaceae Wild pineapple relative 382 Mbp 27,024 25 2015[226] 100× coverage using Illumina paired-end reads of libraries with different insert sizes.
Ananas comosus (L.) Merr. (Pineapple), varieties F153 and MD2 Bromeliaceae The most economically valuable crop possessing crassulacean acid metabolism (CAM) 382 Mb 27,024 25 2015[226] 400× Illumina reads, 2× Moleculo synthetic long reads, 1× 454 reads, 5× PacBio single-molecule long reads and 9,400 BACs.
Ottelia alismoides (Duck lettuce) Hydrocharitaceae Aquatic plant 6.45Gb 2024[227] 11,923 scaffolds/contigs and an N50 of 790,733 bp
Pontederia crassipes (Water hyacinth) Pontederiaceae Aquatic plant 1.22 Gb 8 65,299 2024[228] Scaffold N50 = 77.2Mb
Musa acuminata (Banana) Musaceae A-genome of modern banana cultivars 523 Mbp 36,542 2012[229] N50 contig: 43.1 kb

N50 scaffold: 1.3 Mb

Musa balbisiana (Wild banana) (PKW) Musaceae B-genome of modern banana cultivars 438 Mbp 36,638 2013[230] N50 contig: 7.9 kb
Musa balbisiana (DH-PKW) Musaceae B-genome (B-subgenome to cultivated allotriploid bananas) 430 Mb 35,148 11 CATAS, BGI, CIRAD 2019[231] N50 contig: 1.83 Mb
Musa beccarii (Red ornamental banana) Musaceae Ornamental, aids understanding Musaceae genomes evolution 567 Mb 39,112 9 2023[232]
Calamus simplicifolius
Arecaceae native to tropical and subtropical regions 1.98 Gb 51,235 2018[233]
Cocos nucifera (Coconut palm) Arecaceae used in food and cosmetics ~2.42 Gb 2017[234]
Daemonorops jenkinsiana Arecaceae native to tropical and subtropical regions. 1.61 Gb 52,342 2018[233]
Phoenix dactylifera (Date palm) Arecaceae Woody crop in arid regions 658 Mbp 28,800 2011[235] N50 contig: 6.4 kb
Elaeis guineensis (African oil palm) Arecaceae Oil-bearing crop ~1800 Mbp 34,800 2013[236] N50 scaffold: 1.27 Mb
Spirodela polyrhiza (Greater duckweed) Araceae Aquatic plant 158 Mbp 19,623 2014[237] N50 scaffold: 3.76 Mb
Dendrobium hybrid cultivar ‘Emma White’ Orchidaceae Commercialised hybrid orchid 678 Mbp 2022[238]
Phalaenopsis equestris (Schauer) Rchb.f. (Moth orchid) Orchidaceae Breeding parent of many modern moth orchid cultivars and hybrids.

Plant with crassulacean acid metabolism (CAM).

1600 Mbp 29,431 2014[239] N50 scaffold: 359,115 kb
Iris pallida Lam. (Dalmatian Iris) Iridaceae Ornamental and, commercial interest in secondary metabolites 10.04 Gbp 63,944 Novartis 2023[240] Scaffold N50: 14.34 Mbp
Iris sibirica (Siberian Ibis) Iridaceae Ornamental flower 2023[241]
Iris virginica (Southern Blue Flag Iris) Iridaceae Ornamental flower 2023[241]

Press releases announcing sequencing

[edit]

Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed peer-review journal with DOI.

See also

[edit]
[edit]

References

[edit]
  1. ^ Yu J, Li L, Wang S, Dong S, Chen Z, Patel N, et al. (2020). "Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta)". Gigabyte. 2020: 1–9. doi:10.46471/gigabyte.8. PMC 9631980. PMID 36824590.
  2. ^ Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, et al. (October 2017). "Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome". Cell. 171 (2): 287–304.e15. doi:10.1016/j.cell.2017.09.030. hdl:21.11116/0000-0000-371C-4. PMID 28985561.
  3. ^ Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, et al. (January 2008). "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science. 319 (5859): 64–9. Bibcode:2008Sci...319...64R. doi:10.1126/science.1150646. hdl:11858/00-001M-0000-0012-3787-A. PMID 18079367. S2CID 11115152.
  4. ^ Pederson ER, Warshan D, Rasmussen U (September 2019). "Genome Sequencing of Pleurozium schreberi: The Assembled and Annotated Draft Genome of a Pleurocarpous Feather Moss". G3. 9 (9): 2791–2797. doi:10.1534/g3.119.400279. PMC 6723128. PMID 31285273.
  5. ^ Cui J, Zhu Y, Du H, Liu Z, Shen S, Wang T, et al. (December 2022). "Chromosome-level reference genome of tetraploid Isoetes sinensis provides insights into evolution and adaption of lycophytes". GigaScience. 12. doi:10.1093/gigascience/giad079. PMC 10541799. PMID 37776367.
  6. ^ Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, et al. (May 2011). "The Selaginella genome identifies genetic changes associated with the evolution of vascular plants". Science. 332 (6032): 960–3. Bibcode:2011Sci...332..960B. doi:10.1126/science.1203810. PMC 3166216. PMID 21551031.
  7. ^ "Phytozome". JGI MycoCosm.
  8. ^ VanBuren R, Wai CM, Ou S, Pardo J, Bryant D, Jiang N, et al. (January 2018). "Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla". Nature Communications. 9 (1): 13. Bibcode:2018NatCo...9...13V. doi:10.1038/s41467-017-02546-5. PMC 5750206. PMID 29296019.
  9. ^ a b Li FW, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J, Delaux PM, et al. (July 2018). "Fern genomes elucidate land plant evolution and cyanobacterial symbioses". Nature Plants. 4 (7): 460–472. Bibcode:2018NatPl...4..460L. doi:10.1038/s41477-018-0188-8. PMC 6786969. PMID 29967517.
  10. ^ Marchant DB, Sessa EB, Wolf PG, Heo K, Barbazuk WB, Soltis PS, et al. (December 2019). "The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly". Scientific Reports. 9 (1): 18181. Bibcode:2019NatSR...918181M. doi:10.1038/s41598-019-53968-8. PMC 6890710. PMID 31796775.
  11. ^ "Phytozome v13". phytozome-next.jgi.doe.gov. Retrieved 2021-10-15.
  12. ^
    Qiao X, Zhang S, Paterson AH (2022). "Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions". Computational and Structural Biotechnology Journal. 20. Elsevier BV: 3248–3256. doi:10.1016/j.csbj.2022.06.026. PMC 9237934. PMID 35782740. S2CID 249722160.
    Stull GW, Pham KK, Soltis PS, Soltis DE (May 2023). "Deep reticulation: the long legacy of hybridization in vascular plant evolution". The Plant Journal. 114 (4). John Wiley & Sons Ltd: 743–766. doi:10.1111/tpj.16142. PMID 36775995. S2CID 253124732.
    These reviews cite this research.
    Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, et al. (May 2022). "The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence". Nature Plants. 8 (5): 500–512. Bibcode:2022NatPl...8..500H. doi:10.1038/s41477-022-01146-6. PMC 9122828. PMID 35534720. S2CID 248668428.
  13. ^ Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, et al. (April 2022). "The Cycas genome and the early evolution of seed plants". Nature Plants. 8 (4): 389–401. Bibcode:2022NatPl...8..389L. doi:10.1038/s41477-022-01129-7. PMC 9023351. PMID 35437001. S2CID 248241496.
  14. ^ a b c d Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, et al. (December 2016). "Sequence of the Sugar Pine Megagenome". Genetics. 204 (4): 1613–1626. doi:10.1534/genetics.116.193227. PMC 5161289. PMID 27794028.
  15. ^ Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. (May 2013). "The Norway spruce genome sequence and conifer genome evolution". Nature. 497 (7451): 579–84. Bibcode:2013Natur.497..579N. doi:10.1038/nature12211. hdl:1854/LU-4110028. PMID 23698360.
  16. ^ Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, et al. (June 2013). "Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data". Bioinformatics. 29 (12): 1492–7. doi:10.1093/bioinformatics/btt178. PMC 3673215. PMID 23698863.
  17. ^ Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, Vandervalk BP, et al. (July 2015). "Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism". The Plant Journal. 83 (2): 189–212. doi:10.1111/tpj.12886. PMID 26017574. S2CID 2642832.
  18. ^ Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, et al. (March 2014). "Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies". Genome Biology. 15 (3): R59. doi:10.1186/gb-2014-15-3-r59. PMC 4053751. PMID 24647006.
  19. ^ Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, et al. (March 2014). "Sequencing and assembly of the 22-gb loblolly pine genome". Genetics. 196 (3): 875–90. doi:10.1534/genetics.113.159715. PMC 3948813. PMID 24653210.
  20. ^ Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, et al. (March 2014). "Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation". Genetics. 196 (3): 891–909. doi:10.1534/genetics.113.159996. PMC 3948814. PMID 24653211.
  21. ^ Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, et al. (November 2016). "Draft genome of the living fossil Ginkgo biloba". GigaScience. 5 (1): 49. doi:10.1186/s13742-016-0154-1. PMC 5118899. PMID 27871309.
  22. ^ Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, Cardeno C, et al. (September 2017). "The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae". G3. 7 (9): 3157–3167. doi:10.1534/g3.117.300078. PMC 5592940. PMID 28751502.
  23. ^ Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R, et al. (February 2018). "A genome for gnetophytes and early evolution of seed plants". Nature Plants. 4 (2): 82–89. Bibcode:2018NatPl...4...82W. doi:10.1038/s41477-017-0097-2. hdl:1854/LU-8558174. PMID 29379155.
  24. ^ Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, Putintseva YA, et al. (February 2019). "Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb)". BMC Bioinformatics. 20 (Suppl 1): 37. doi:10.1186/s12859-018-2570-y. PMC 6362582. PMID 30717661.
  25. ^ Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, et al. (July 2019). "Abies alba Mill.): A Community-Generated Genomic Resource". G3. 9 (7): 2039–2049. doi:10.1534/g3.119.400083. PMC 6643874. PMID 31217262.
  26. ^ Amborella Genome Project (December 2013). "The Amborella genome and the evolution of flowering plants". Science. 342 (6165): 1241089. doi:10.1126/science.1241089. PMID 24357323. S2CID 202600898.
  27. ^ "Amborella Genome Database". Penn State University. Archived from the original on 2013-06-28.
  28. ^ "Chloranthus spicatus (Thunb.) Makino". www.gbif.org. Retrieved 2022-07-07.
  29. ^ Guo X, Fang D, Sahu SK, Yang S, Guang X, Folk R, et al. (November 2021). "Chloranthus genome provides insights into the early diversification of angiosperms". Nature Communications. 12 (1): 6930. Bibcode:2021NatCo..12.6930G. doi:10.1038/s41467-021-26922-4. PMC 8626473. PMID 34836973.
  30. ^ Strijk JS, Hinsinger DD, Roeder MM, Chatrou LW, Couvreur TL, Erkens RH, et al. (July 2021). "Chromosome-level reference genome of the soursop (Annona muricata): A new resource for Magnoliid research and tropical pomology". Molecular Ecology Resources. 21 (5): 1608–1619. doi:10.1111/1755-0998.13353. PMC 8251617. PMID 33569882.
  31. ^ He X, Wang Y, Lian J, Zheng J, Zhou J, Li J, et al. (November 2022). "The whole-genome assembly of an endangered Salicaceae species: Chosenia arbutifolia (Pall.) A. Skv". GigaScience. 11. doi:10.1093/gigascience/giac109. PMC 9661892. PMID 36374197.
  32. ^ Soltis PS, Folk RA, Soltis DE (2019). "Darwin review: Angiosperm phylogeny and evolutionary radiations". Proceedings of the Royal Society B: Biological Sciences. 286 (1899). doi:10.1098/rspb.2019.0099.
  33. ^ Nock CJ, Baten A, Mauleon R, Langdon KS, Topp B, Hardner C, et al. (October 2020). "Chromosome-Scale Assembly and Annotation of the Macadamia Genome (Macadamia integrifolia HAES 741)". G3. 10 (10): 3497–3504. doi:10.1534/g3.120.401326. PMC 7534425. PMID 32747341.
  34. ^ Murigneux V, Rai SK, Furtado A, Bruxner TJ, Tian W, Harliwong I, et al. (December 2020). "Comparison of long-read methods for sequencing and assembly of a plant genome". GigaScience. 9 (12). doi:10.1093/gigascience/giaa146. PMC 7751402. PMID 33347571.
  35. ^ Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li LT, et al. (May 2013). "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology. 14 (5): R41. Bibcode:2013GeBio..14R..41M. doi:10.1186/gb-2013-14-5-r41. PMC 4053705. PMID 23663246.
  36. ^ "Aquilegia caerulea". Phytozome v9.1. Archived from the original on 2015-02-20. Retrieved 2013-07-10.
  37. ^ Strijk JS, Hinsinger DD, Zhang F, Cao K (November 2019). "Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research". GigaScience. 8 (11). doi:10.1093/gigascience/giz136. PMC 6859433. PMID 31738437.
  38. ^ Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. (January 2014). "The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)". Nature. 505 (7484): 546–9. Bibcode:2014Natur.505..546D. doi:10.1038/nature12817. hdl:10230/22493. PMID 24352233.
  39. ^ a b Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, et al. (February 2017). "The genome of Chenopodium quinoa". Nature. 542 (7641): 307–312. Bibcode:2017Natur.542..307J. doi:10.1038/nature21370. hdl:10754/622874. PMID 28178233.
  40. ^ Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, et al. (March 2016). "The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly". The Plant Genome. 9 (1): 0. doi:10.3835/plantgenome2015.07.0062. PMID 27898770.
  41. ^ "Phytozome". phytozome.jgi.doe.gov. Retrieved 2017-06-21.
  42. ^ a b Copetti D, Búrquez A, Bustamante E, Charboneau JLM, Childs KL, Eguiarte LE, et al. (November 2017). "Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti". Proc Natl Acad Sci U S A. 114 (45): 12003–12008. Bibcode:2017PNAS..11412003C. doi:10.1073/pnas.1706367114. PMC 5692538. PMID 29078296.
  43. ^ Gao Y, Liao HB, Liu TH, Wu JM, Wang ZF, Cao HL (April 2023). "Draft genome and transcriptome of Nepenthes mirabilis, a carnivorous plant in China". BMC Genomic Data. 24 (1): 21. doi:10.1186/s12863-023-01126-5. PMC 10103442. PMID 37060047.
  44. ^ Wang L, Ma G, Wang H, Cheng C, Mu S, Quan W, et al. (September 2019). "A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells". GigaScience. 8 (9). doi:10.1093/gigascience/giz116. PMC 6741815. PMID 31513708.
  45. ^ Sturtevant D, Lu S, Zhou ZW, Shen Y, Wang S, Song JM, et al. (March 2020). "Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds". Science Advances. 6 (11): eaay3240. doi:10.1126/sciadv.aay3240. PMC 7065883. PMID 32195345.
  46. ^ a b Butts C, Bierma J, Martin R (July 2016). "Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis". Proteins. 84 (10): 1517–1533. doi:10.1002/prot.25095. PMC 5026580. PMID 27353064.
  47. ^ Liu JN, Fang H, Liang Q, Dong Y, Wang C, Yan L, et al. (December 2022). "Genomic analyses provide insights into the evolution and salinity adaptation of halophyte Tamarix chinensis". GigaScience. 12. doi:10.1093/gigascience/giad053. PMC 10370455. PMID 37494283.
  48. ^ Zhang H, Du X, Dong C, Zheng Z, Mu W, Zhu M, et al. (June 2022). "Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae)". GigaScience. 11. doi:10.1093/gigascience/giac050. PMC 9197684. PMID 35701375.
  49. ^ a b c d e Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (March 2019). "The draft genomes of five agriculturally important African orphan crops". GigaScience. 8 (3). doi:10.1093/gigascience/giy152. PMC 6405277. PMID 30535374.
  50. ^ Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of Marula (Sclerocarya birrea)". GigaDB Dataset. GigaScience Database. doi:10.5524/101057.
  51. ^ a b Li L, Chen X, Fang D, Dong S, Guo X, Li N, et al. (April 2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus". The New Phytologist. 234 (1): 295–310. doi:10.1111/nph.17949. PMC 7612470. PMID 34997964.
  52. ^ a b Salojärvi J, Smolander OP, Nieminen K, Rajaraman S, Safronov O, Safdari P, et al. (May 2017). "Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch". Nature Genetics. 49 (6): 904–912. doi:10.1038/ng.3862. PMID 28481341.
  53. ^ Chen S, Wang Y, Yu L, Zheng T, Wang S, Yue Z, et al. (February 2021). "Genome sequence and evolution of Betula platyphylla". Horticulture Research. 8 (1): 37. Bibcode:2021HorR....8...37C. doi:10.1038/s41438-021-00481-7. PMC 7878895. PMID 33574224.
  54. ^ Wang N, Thomson M, Bodles WJ, Crawford RM, Hunt HV, Featherstone AW, et al. (June 2013). "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers". Molecular Ecology. 22 (11): 3098–111. Bibcode:2013MolEc..22.3098W. doi:10.1111/mec.12131. PMID 23167599. S2CID 206179485.
  55. ^ Zhao T, Ma W, Yang Z, Liang L, Chen X, Wang G, et al. (April 2021). "A chromosome-level reference genome of the hazelnut, Corylus heterophylla Fisch". GigaScience. 10 (4). doi:10.1093/gigascience/giab027. PMC 8054262. PMID 33871007.
  56. ^ Li Y, Sun P, Lu Z, Chen J, Wang Z, Du X, et al. (March 2021). "The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding". Horticulture Research. 8 (1): 54. Bibcode:2021HorR....8...54L. doi:10.1038/s41438-021-00495-1. PMC 7917096. PMID 33642584.
  57. ^ a b c d Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. (August 2013). "An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions". Nature Genetics. 45 (8): 891–8. doi:10.1038/ng.2684. PMID 23817568.
  58. ^ a b Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, et al. (May 2011). "The Arabidopsis lyrata genome sequence and the basis of rapid genome size change". Nature Genetics. 43 (5): 476–81. doi:10.1038/ng.807. PMC 3083492. PMID 21478890.
  59. ^ "Updated Col-0 Genome Annotation (Araport11 Official Release) Updated Jun 2016 | Araport". www.araport.org. Archived from the original on 2019-07-19. Retrieved 2019-03-18.
  60. ^ The Arabidopsis Genome Initiative (December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature. 408 (6814): 796–815. Bibcode:2000Natur.408..796T. doi:10.1038/35048692. PMID 11130711.
  61. ^ Byrne SL, Erthmann PØ, Agerbirk N, Bak S, Hauser TP, Nagy I, et al. (January 2017). "The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry". Scientific Reports. 7: 40728. Bibcode:2017NatSR...740728B. doi:10.1038/srep40728. PMC 5240624. PMID 28094805.
  62. ^ Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, et al. (August 2011). "The genome of the mesopolyploid crop species Brassica rapa". Nature Genetics. 43 (10): 1035–9. doi:10.1038/ng.919. PMID 21873998. S2CID 205358099.
  63. ^ Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. (August 2014). "Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome". Science. 345 (6199): 950–3. Bibcode:2014Sci...345..950C. doi:10.1126/science.1253435. PMID 25146293. S2CID 206556986.
  64. ^ "Capsella rubella". Phytozome v9.1. Archived from the original on 2015-04-26. Retrieved 2013-07-09.
  65. ^ Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL, et al. (July 2013). "The Capsella rubella genome and the genomic consequences of rapid mating system evolution". Nature Genetics. 45 (7): 831–5. doi:10.1038/ng.2669. PMID 23749190.
  66. ^ Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, et al. (October 2016). "The Cardamine hirsuta genome offers insight into the evolution of morphological diversity". Nature Plants. 2 (11): 16167. Bibcode:2016NatPl...216167G. doi:10.1038/nplants.2016.167. PMC 8826541. PMID 27797353.
  67. ^ Bell L, Chadwick M, Puranik M, Tudor R, Methven L, Kennedy S, et al. (2020). "The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest". Frontiers in Plant Science. 11: 525102. doi:10.3389/fpls.2020.525102. PMC 7652772. PMID 33193472.
  68. ^ "Erysimum Genome Site". www.erysimum.org. September 17, 2019.
  69. ^ Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, et al. (April 2020). "Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)". eLife. 9: e51712. doi:10.7554/eLife.51712. PMC 7180059. PMID 32252891.
  70. ^ Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, et al. (2013). "The Reference Genome of the Halophytic Plant Eutrema salsugineum". Frontiers in Plant Science. 4: 46. doi:10.3389/fpls.2013.00046. PMC 3604812. PMID 23518688.
  71. ^ Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, et al. (August 2011). "The genome of the extremophile crucifer Thellungiella parvula". Nature Genetics. 43 (9): 913–8. doi:10.1038/ng.889. PMC 3586812. PMID 21822265.
  72. ^ van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, et al. (October 2011). "The draft genome and transcriptome of Cannabis sativa". Genome Biology. 12 (10): R102. doi:10.1186/gb-2011-12-10-r102. PMC 3359589. PMID 22014239.
  73. ^ Wang L, Fan L, Zhao Z, Zhang Z, Jiang L, Chai M, et al. (October 2022). "The Capparis spinosa var. herbacea genome provides the first genomic instrument for a diversity and evolution study of the Capparaceae family". GigaScience. 11. doi:10.1093/gigascience/giac106. PMC 9618406. PMID 36310248.
  74. ^ Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. (April 2008). "The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)". Nature. 452 (7190): 991–6. Bibcode:2008Natur.452..991M. doi:10.1038/nature06856. PMC 2836516. PMID 18432245.
  75. ^ Ye G, Zhang H, Chen B, Nie S, Liu H, Gao W, et al. (February 2019). "De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth". The Plant Journal. 97 (4): 779–794. doi:10.1111/tpj.14159. PMID 30427081.
  76. ^ Pei T, Yan M, Kong Y, Fan H, Liu J, Cui M, et al. (2021). "The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway". Gigabyte. 2021: 1–30. doi:10.46471/gigabyte.14. PMC 10038137. PMID 36967728.
  77. ^ Hoang NV, Sogbohossou EO, Xiong W, Simpson CJ, Singh P, Walden N, et al. (April 2023). "The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae". The Plant Cell. 35 (5): 1334–1359. doi:10.1093/plcell/koad018. PMC 10118270. PMID 36691724.
  78. ^ Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, et al. (December 2017). "The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism". Nature Communications. 8 (1): 1899. Bibcode:2017NatCo...8.1899Y. doi:10.1038/s41467-017-01491-7. PMC 5711932. PMID 29196618.
  79. ^ Fu Y, Li L, Hao S, Guan R, Fan G, Shi C, et al. (June 2017). "Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata". GigaScience. 6 (6): 1–5. doi:10.1093/gigascience/gix033. PMC 5530320. PMID 28475810.
  80. ^ Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. (January 2013). "The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions". Nature Genetics. 45 (1): 51–8. doi:10.1038/ng.2470. hdl:2434/619399. PMID 23179023.
  81. ^ Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, et al. (July 2012). "The genome of melon (Cucumis melo L.)". Proceedings of the National Academy of Sciences of the United States of America. 109 (29): 11872–7. Bibcode:2012PNAS..10911872G. doi:10.1073/pnas.1205415109. PMC 3406823. PMID 22753475.
  82. ^ Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. (December 2009). "The genome of the cucumber, Cucumis sativus L". Nature Genetics. 41 (12): 1275–81. doi:10.1038/ng.475. PMID 19881527.
  83. ^ Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, et al. (April 2019). "The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita". Molecular Plant. 12 (4): 506–520. doi:10.1016/j.molp.2018.12.023. PMID 30630074.
  84. ^ Barrera-Redondo J, Sánchez-de la Vega G, Aguirre-Liguori JA, Castellanos-Morales G, Gutiérrez-Guerrero YT, Aguirre-Dugua X, et al. (May 2021). "The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative". Horticulture Research. 8 (1): 109. Bibcode:2021HorR....8..109B. doi:10.1038/s41438-021-00544-9. PMC 8087764. PMID 33931618.
  85. ^ Xia M, Han X, He H, Yu R, Zhen G, Jia X, et al. (June 2018). "Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo". GigaScience. 7 (6). doi:10.1093/gigascience/giy067. PMC 6007378. PMID 29893829.
  86. ^ Wu Z, Chen H, Pan Y, Feng H, Fang D, Yang J, et al. (July 2022). "Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses". The New Phytologist. 235 (1): 276–291. doi:10.1111/nph.18017. PMID 35118662. S2CID 246529299.
  87. ^ Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al. (February 2013). "Draft genome sequence of the rubber tree Hevea brasiliensis". BMC Genomics. 14: 75. doi:10.1186/1471-2164-14-75. PMC 3575267. PMID 23375136.
  88. ^ Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, et al. (February 2011). "Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L". DNA Research. 18 (1): 65–76. doi:10.1093/dnares/dsq030. PMC 3041505. PMID 21149391.
  89. ^ Prochnik et al. (2012), J. Tropical Plant Biology
  90. ^ Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, et al. (September 2010). "Draft genome sequence of the oilseed species Ricinus communis". Nature Biotechnology. 28 (9): 951–6. doi:10.1038/nbt.1674. PMC 2945230. PMID 20729833.
  91. ^ Lu J, Pan C, Fan W, Liu W, Zhao H, Li D, et al. (July 2021). "A Chromosome-level Assembly of A Wild Castor Genome Provides New Insights into the Adaptive Evolution in A Tropical Desert". Genomics Proteomics Bioinformatics. S1672-0229 (21): 00162–5. doi:10.1016/j.gpb.2021.04.003. PMC 9510866. PMID 34339842. S2CID 236885144.
  92. ^ Gao F, Wang X, Li X, Xu M, Li H, Abla M, et al. (July 2018). "Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub". GigaScience. 7 (7). doi:10.1093/gigascience/giy074. PMC 6048559. PMID 29917074.
  93. ^ Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, et al. (2012). "The first draft of the pigeonpea genome sequence". Journal of Plant Biochemistry and Biotechnology. 21 (1): 98–112. doi:10.1007/s13562-011-0088-8. PMC 3886394. PMID 24431589.
  94. ^ Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, et al. (November 2011). "Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers". Nature Biotechnology. 30 (1): 83–9. doi:10.1038/nbt.2022. PMID 22057054.
  95. ^ a b Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, et al. (April 2016). "The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut". Nature Genetics. 48 (4): 438–46. doi:10.1038/ng.3517. hdl:2346/93664. PMID 26901068.
  96. ^ Liu Y, Zhang X, Han K, Li R, Xu G, Han Y, et al. (2020). "Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii". Plant Biotechnology Journal. 19 (5): 952–965. doi:10.1111/pbi.13520. PMC 8131047. PMID 33236503.
  97. ^ Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. (March 2013). "Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement" (PDF). Nature Biotechnology. 31 (3): 240–6. doi:10.1038/nbt.2491. PMID 23354103. S2CID 6649873.
  98. ^ Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, et al. (June 2013). "A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.)". The Plant Journal. 74 (5): 715–29. doi:10.1111/tpj.12173. PMID 23489434.
  99. ^ Hong Z, Li J, Liu X, Lian J, Zhang N, Yang Z, et al. (August 2020). "The chromosome-level draft genome of Dalbergia odorifera". GigaScience. 9 (8). doi:10.1093/gigascience/giaa084. PMC 7433187. PMID 32808664.
  100. ^ Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Apple-Ring Acacia (Faidherbia albida)". GigaDB Dataset. GigaScience Database. doi:10.5524/101054. Retrieved 2019-06-19.
  101. ^ Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. (January 2010). "Genome sequence of the palaeopolyploid soybean". Nature. 463 (7278): 178–83. Bibcode:2010Natur.463..178S. doi:10.1038/nature08670. PMID 20075913.
  102. ^ Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Hyacinth Bean (Lablab purpureus)". GigaDB Dataset. GigaScience Database. doi:10.5524/101056.
  103. ^ Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, et al. (August 2008). "Genome structure of the legume, Lotus japonicus". DNA Research. 15 (4): 227–39. doi:10.1093/dnares/dsn008. PMC 2575887. PMID 18511435.
  104. ^ Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, et al. (November 2011). "The Medicago genome provides insight into the evolution of rhizobial symbioses". Nature. 480 (7378): 520–4. Bibcode:2011Natur.480..520Y. doi:10.1038/nature10625. PMC 3272368. PMID 22089132.
  105. ^ He Q, Li Z, Liu Y, Yang H, Liu L, Ren Y, et al. (September 2023). "Chromosome-scale assembly and analysis of Melilotus officinalis genome for SSR development and nodulation genes analysis". The Plant Genome. 16 (3): e20345. doi:10.1002/tpg2.20345. PMID 37259688.
  106. ^ "Phaseolus vulgaris v1.0". Phytozome v9.1. Archived from the original on 2015-04-15. Retrieved 2013-07-09.
  107. ^ Sudalaimuthuasari N, Ali R, Kottackal M, Rafi M, Al Nuaimi M, Kundu B, et al. (July 2022). "The Genome of the Mimosoid Legume Prosopis cineraria, a Desert Tree". International Journal of Molecular Sciences. 23 (15): 8503. doi:10.3390/ijms23158503. PMC 9369113. PMID 35955640.
  108. ^ a b
    Ugalde JM, Straube H (August 2023). "New genes on the block: Neofunctionalization of tandem duplicate genes with putative new functions in Arabidopsis". Plant Physiology. 192 (4). Oxford University Press: 2574–2576. doi:10.1093/plphys/kiad271. PMC 10400027. PMID 37158166. S2CID 258566187.
    This review cites this research.
    Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, Bednář P, et al. (March 2023). "The giant diploid faba genome unlocks variation in a global protein crop". Nature. 615 (7953): 652–659. Bibcode:2023Natur.615..652J. doi:10.1038/s41586-023-05791-5. PMC 10033403. PMID 36890232.
  109. ^ Fuller T, Bickhart DM, Koch LM, Kucek LK, Ali S, Mangelson H, et al. (2023-11-13). "A reference assembly for the legume cover crop hairy vetch (Vicia villosa)". GigaByte. 2023: 1–20. doi:10.46471/gigabyte.98. PMC 10659084. PMID 38023065.
  110. ^ Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, et al. (2023). "Supporting data for "Genomic data of Vigna hirtella"". GigaDB Dataset. GigaScience Database. doi:10.5524/102399.
  111. ^ a b Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, et al. (December 2022). "Genome assemblies of Vigna reflexo-pilosa (créole bean) and its progenitors, Vigna hirtella and Vigna trinervia, revealed homoeolog expression bias and expression-level dominance in the allotetraploid". GigaScience. 12. doi:10.1093/gigascience/giad050. PMC 10357499. PMID 37470496.
  112. ^ Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, et al. (2023). "Supporting data for "Genomic data of créole bean, Vigna reflexopilosa"". GigaDB Dataset. GigaScience Database. doi:10.5524/102398.
  113. ^ Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Bambara Groundnut (Vigna subterranea)". GigaDB Dataset. GigaScience Database. doi:10.5524/101055. Retrieved 2019-06-19.
  114. ^ Nieves JW (2013). "Alternative Therapy through Nutrients and Nutraceuticals". Osteoporosis. pp. 1739–1749. doi:10.1016/B978-0-12-415853-5.00074-1. ISBN 9780124158535. Red clover is a wild plant belonging to the legume family and is often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.
  115. ^ Bickhart DM, Koch LM, Smith TP, Riday H, Sullivan ML (2022-02-18). "Chromosome-scale assembly of the highly heterozygous genome of red clover (Trifolium pratense L.), an allogamous forage crop species". Gigabyte. 2022: 1–13. doi:10.46471/gigabyte.42. PMC 9650271. PMID 36824517. S2CID 246987248.
  116. ^ Xi H, Nguyen V, Ward C, Liu Z, Searle IR (2022-01-31). "Chromosome-level assembly of the common vetch (Vicia sativa) reference genome". Gigabyte. 2022: 1–20. doi:10.46471/gigabyte.38. PMC 9650280. PMID 36824524. S2CID 246453086.
  117. ^ Shirasawa K, Chahota R, Hirakawa H, Nagano S, Nagasaki H, Sharma T, et al. (2021-10-08). "A chromosome-scale draft genome sequence of horsegram (Macrotyloma uniflorum)". Gigabyte. 2021: 1–23. doi:10.46471/gigabyte.30. PMC 9650294. PMID 36824333.
  118. ^ Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, et al. (September 2019). "Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima)". GigaScience. 8 (9). doi:10.1093/gigascience/giz112. PMC 6741814. PMID 31513707.
  119. ^ Plomion C, Aury JM, Amselem J, Leroy T, Murat F, Duplessis S, et al. (July 2018). "Oak genome reveals facets of long lifespan". Nature Plants. 4 (7): 440–452. Bibcode:2018NatPl...4..440P. doi:10.1038/s41477-018-0172-3. PMC 6086335. PMID 29915331.
  120. ^ a b Huang Y, Xiao L, Zhang Z, Zhang R, Wang Z, Huang C, et al. (May 2019). "The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition". GigaScience. 8 (5). doi:10.1093/gigascience/giz036. PMC 6497033. PMID 31049561.
  121. ^ Li X, Cai K, Zhang Q, Pei X, Chen S, Jiang L, et al. (June 2022). "The Manchurian Walnut Genome: Insights into Juglone and Lipid Biosynthesis". GigaScience. 11. doi:10.1093/gigascience/giac057. PMC 9239856. PMID 35764602.
  122. ^ Zhang J, Zhang W, Ji F, Qiu J, Song X, Bu D, et al. (January 2020). "A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication". Plant Biotechnology Journal. 18 (9): 1848–1850. doi:10.1111/pbi.13350. PMC 7415773. PMID 32004401.
  123. ^ Ning DL, Wu T, Xiao LJ, Ma T, Fang WL, Dong RQ, et al. (February 2020). "Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis". GigaScience. 9 (2). doi:10.1093/gigascience/giaa006. PMC 7043058. PMID 32101299.
  124. ^ Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. (November 2012). "The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads". The Plant Journal. 72 (3): 461–73. doi:10.1111/j.1365-313X.2012.05093.x. PMID 22757964.
  125. ^ Gao Y, Wang H, Liu C, Chu H, Dai D, Song S, et al. (May 2018). "De novo genome assembly of the red silk cotton tree (Bombax ceiba)". GigaScience. 7 (5). doi:10.1093/gigascience/giy051. PMC 5967522. PMID 29757382.
  126. ^ Teh BT, Lim K, Yong CH, Ng CC, Rao SR, Rajasegaran V, et al. (November 2017). "The draft genome of tropical fruit durian (Durio zibethinus)". Nature Genetics. 49 (11): 1633–1641. doi:10.1038/ng.3972. PMID 28991254.
  127. ^ "Gossypium raimondii v2.1". Phytozome v9.1. Archived from the original on 2015-02-18. Retrieved 2013-07-10.
  128. ^ Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al. (February 2011). "The genome of Theobroma cacao". Nature Genetics. 43 (2): 101–8. doi:10.1038/ng.736. PMID 21186351. S2CID 4685532.
  129. ^ Pennisi E (September 2010). "Scientific publishing. Genomics researchers upset by rivals' publicity". Science. 329 (5999): 1585. Bibcode:2010Sci...329.1585P. doi:10.1126/science.329.5999.1585. PMID 20929817.
  130. ^ Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, et al. (June 2013). "The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color". Genome Biology. 14 (6): r53. doi:10.1186/gb-2013-14-6-r53. PMC 4053823. PMID 23731509.
  131. ^ Cornejo OE, Yee MC, Dominguez V, Andrews M, Sockell A, Strandberg E, et al. (2018-10-16). "Theobroma cacao L., provide insights into its domestication process". Communications Biology. 1 (1): 167. doi:10.1038/s42003-018-0168-6. PMC 6191438. PMID 30345393.
  132. ^ Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, et al. (September 2012). "A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica". BMC Genomics. 13: 464. doi:10.1186/1471-2164-13-464. PMC 3507787. PMID 22958331.
  133. ^ Krishnan NM, Pattnaik S, Deepak SA, Hariharan AK, Gaur P, Chaudhary R, et al. (25 December 2011). "De novo sequencing and assembly ofAzadirachta indica fruit transcriptome" (PDF). Current Science. 101 (12): 1553–61.
  134. ^ He J, Bao S, Deng J, Li Q, Ma S, Liu Y, et al. (June 2022). "A chromosome-level genome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree". GigaScience. 11. doi:10.1093/gigascience/giac042. PMC 9197682. PMID 35701376.
  135. ^ Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al. (2018). "Genomic data of the Horseradish Tree (Moringa oleifera)". GigaDB Dataset. GigaScience Database. doi:10.5524/101058.
  136. ^ a b c Ferguson S, Jones A, Murray K, Andrew R, Schwessinger B, Borevitz J (May 2024). "Plant genome evolution in the genus Eucalyptus is driven by structural rearrangements that promote sequence divergence". Genome Research. 34 (4): 606–619. doi:10.1101/gr.277999.123. PMC 11146599. PMID 38589251.
  137. ^ a b Lötter A, Duong TA, Candotti J, Mizrachi E, Wegrzyn JL, Myburg AA (December 2022). "Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids". GigaScience. 12. doi:10.1093/gigascience/giad064. PMC 10460159. PMID 37632754.
  138. ^ Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. (June 2014). "The genome of Eucalyptus grandis". Nature. 510 (7505): 356–62. Bibcode:2014Natur.510..356M. doi:10.1038/nature13308. hdl:1854/LU-5655667. PMID 24919147.
  139. ^ Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B, et al. (January 2020). "The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies". GigaScience. 9 (1). doi:10.1093/gigascience/giz160. PMC 6939829. PMID 31895413.
  140. ^ Voelker J, Shepherd M, Mauleon R (2021). "A high-quality draft genome for Melaleuca alternifolia (tea tree): a new platform for evolutionary genomics of myrtaceous terpene-rich species". Gigabyte. 1: 1–15. doi:10.46471/gigabyte.28. PMC 9650293. PMID 36824337. S2CID 238720658.
  141. ^ Wu S, Sun W, Xu Z, Zhai J, Li X, Li C, et al. (2020-06-01). "The genome sequence of star fruit (Averrhoa carambola)". Horticulture Research. 7 (1): 95. Bibcode:2020HorR....7...95W. doi:10.1038/s41438-020-0307-3. PMC 7261771. PMID 32528707.
  142. ^ Jiang S, An H, Xu F, Zhang X (March 2020). "Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome". GigaScience. 9 (3). doi:10.1093/gigascience/giaa015. PMC 7059265. PMID 32141509.
  143. ^ Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. (February 2011). "The genome of woodland strawberry (Fragaria vesca)". Nature Genetics. 43 (2): 109–16. doi:10.1038/ng.740. PMC 3326587. PMID 21186353.
  144. ^ Su W, Jing Y, Lin S, Yue Z, Yang X, Xu J, et al. (May 2021). "Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe". PNAS. 118 (20): e2101767118. Bibcode:2021PNAS..11801767S. doi:10.1073/pnas.2101767118. ISSN 0027-8424. PMC 8157987. PMID 33986115.
  145. ^ Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. (October 2010). "The genome of the domesticated apple (Malus × domestica Borkh.)". Nature Genetics. 42 (10): 833–9. doi:10.1038/ng.654. PMID 20802477.
  146. ^ a b c "Four Rosaceae Genomes Released". Gramene: A Resource for Comparative Plant Genomics. 11 June 2013.
  147. ^ Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, et al. (2012). "The genome of Prunus mume". Nature Communications. 3: 1318. Bibcode:2012NatCo...3.1318Z. doi:10.1038/ncomms2290. PMC 3535359. PMID 23271652.
  148. ^ Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, et al. (May 2013). "The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution". Nature Genetics. 45 (5): 487–94. doi:10.1038/ng.2586. hdl:2434/218547. PMID 23525075.
  149. ^ Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, et al. (December 2020). "Chromosome-level draft genome of a diploid plum (Prunus salicina)". GigaScience. 9 (12). doi:10.1093/gigascience/giaa130. PMC 7727024. PMID 33300949.
  150. ^ Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al. (February 2013). "The genome of the pear (Pyrus bretschneideri Rehd.)". Genome Research. 23 (2): 396–408. doi:10.1101/gr.144311.112. PMC 3561880. PMID 23149293.
  151. ^ Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, et al. (February 2024). "Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation". The Plant Journal. 117 (4): 1264–1280. doi:10.1111/tpj.16543. PMID 37964640. S2CID 265210737.
  152. ^ Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, et al. (February 2024). "Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation". The Plant Journal. 117 (4): 1264–1280. doi:10.1111/tpj.16543. PMID 37964640. S2CID 265210737.
  153. ^ VanBuren R, Wai CM, Colle M, Wang J, Sullivan S, Bushakra JM, et al. (August 2018). "A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome". GigaScience. 7 (8). doi:10.1093/gigascience/giy094. PMC 6131213. PMID 30107523.
  154. ^ a b "Citrus clementina". Phytozome v9.1. Archived from the original on 2015-02-19. Retrieved 2013-07-10.
  155. ^ Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al. (January 2013). "The draft genome of sweet orange (Citrus sinensis)". Nature Genetics. 45 (1): 59–66. doi:10.1038/ng.2472. PMID 23179022.
  156. ^ Fan Y, Sahu SK, Yang T, Mu W, Wei J, Cheng L, et al. (November 2021). "The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway". Genomics. 113 (6): 3696–3704. doi:10.1016/j.ygeno.2021.09.007. PMID 34520805. S2CID 237515315.
  157. ^ Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. (September 2006). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)" (PDF). Science. 313 (5793): 1596–604. Bibcode:2006Sci...313.1596T. doi:10.1126/science.1128691. OSTI 901819. PMID 16973872. S2CID 7717980.
  158. ^ Yang W, Wang K, Zhang J, Ma J, Liu J, Ma T (September 2017). "The draft genome sequence of a desert tree Populus pruinosa". GigaScience. 6 (9): 1–7. doi:10.1093/gigascience/gix075. PMC 5603765. PMID 28938721.
  159. ^ Ma Q, Sun T, Li S, Wen J, Zhu L, Yin T, et al. (August 2020). "The Acer truncatum genome provides insights into the nervonic acid biosynthesis". The Plant Journal. 104 (3): 662–678. doi:10.1111/tpj.14954. PMC 7702125. PMID 32772482.
  160. ^ Yang J, Wariss HM, Tao L, Zhang R, Yun Q, Hollingsworth P, et al. (July 2019). "De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China". GigaScience. 8 (7). doi:10.1093/gigascience/giz085. PMC 6629541. PMID 31307060.
  161. ^ Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L, et al. (May 2017). "Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics". GigaScience. 6 (5): 1–14. doi:10.1093/gigascience/gix023. PMC 5467034. PMID 28368449.
  162. ^ Bi Q, Zhao Y, Du W, Lu Y, Gui L, Zheng Z, et al. (June 2019). "Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome". GigaScience. 8 (6). doi:10.1093/gigascience/giz070. PMC 6593361. PMID 31241154.
  163. ^ Liang Q, Li H, Li S, Yuan F, Sun J, Duan Q, et al. (June 2019). "The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge)". GigaScience. 8 (6). doi:10.1093/gigascience/giz071. PMC 6593362. PMID 31241155.
  164. ^ Ding X, Mei W, Lin Q, Wang H, Wang J, Peng S, et al. (March 2020). "Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family". GigaScience. 9 (3). doi:10.1093/gigascience/giaa013. PMC 7050300. PMID 32118265.
  165. ^ Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, et al. (September 2007). "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature. 449 (7161): 463–7. Bibcode:2007Natur.449..463J. doi:10.1038/nature06148. hdl:11577/2430527. PMID 17721507.
  166. ^ Weitemier K, Straub SC, Fishbein M, Bailey CD, Cronn RC, Liston A (2019-09-20). "A draft genome and transcriptome of common milkweed (Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae". PeerJ. 7: e7649. doi:10.7717/peerj.7649. PMC 6756140. PMID 31579586.
  167. ^ Yang J, Zhang G, Zhang J, Liu H, Chen W, Wang X, et al. (June 2017). "Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus". GigaScience. 6 (6): 1–7. doi:10.1093/gigascience/gix028. PMC 5449645. PMID 28431028.
  168. ^ "The Sunflower Genome Database".
  169. ^ Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, et al. (2017). "The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution". Nature. 546 (7656): 148–152. Bibcode:2017Natur.546..148B. doi:10.1038/nature22380. hdl:1828/12772. PMID 28538728.
  170. ^ Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, et al. (2017). "Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce". Nature Communications. 8: 14953. Bibcode:2017NatCo...814953R. doi:10.1038/ncomms14953. PMC 5394340. PMID 28401891.
  171. ^ Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG (January 2018). "Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree". GigaScience. 7 (1): 1–16. doi:10.1093/gigascience/gix125. PMC 5905499. PMID 29253216.
  172. ^ Zhu QG, Xu Y, Yang Y, Guan CF, Zhang QY, Huang JW, et al. (2019-12-18). "Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution". Horticulture Research. 6 (1): 138. doi:10.1038/s41438-019-0227-2. PMC 6917749. PMID 31871686.
  173. ^ Suo Y, Sun P, Cheng H, Han W, Diao S, Li H, et al. (January 2020). "A high-quality chromosomal genome assembly of Diospyros oleifera Cheng". GigaScience. 9 (1). doi:10.1093/gigascience/giz164. PMC 6964648. PMID 31944244.
  174. ^ Zhang G, Tian Y, Zhang J, Shu L, Yang S, Wang W, et al. (2015-12-01). "Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge)". GigaScience. 4 (1): 62. doi:10.1186/s13742-015-0104-3. PMC 4678694. PMID 26673920.
  175. ^ Hamilton JP, Godden GT, Lanier E, Bhat WW, Kinser TJ, Vaillancourt B, et al. (September 2020). "Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana". GigaScience. 9 (9). doi:10.1093/gigascience/giaa093. PMC 7476102. PMID 32893861.
  176. ^ Vining KJ, Johnson SR, Ahkami A, Lange I, Parrish AN, Trapp SC, et al. (February 2017). "Draft Genome Sequence of Mentha longifolia and Development of Resources for Mint Cultivar Improvement". Molecular Plant. 10 (2): 323–339. doi:10.1016/j.molp.2016.10.018. PMID 27867107.
  177. ^ Zhao D, Hamilton JP, Bhat WW, Johnson SR, Godden GT, Kinser TJ, et al. (March 2019). "A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways". GigaScience. 8 (3). doi:10.1093/gigascience/giz005. PMC 6394206. PMID 30698701.
  178. ^ Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, et al. (June 2013). "Architecture and evolution of a minute plant genome". Nature. 498 (7452): 94–8. Bibcode:2013Natur.498...94I. doi:10.1038/nature12132. PMC 4972453. PMID 23665961.
  179. ^ Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, et al. (September 2017). "De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin". GigaScience. 6 (9): 1–7. doi:10.1093/gigascience/gix065. PMC 5737489. PMID 28922823.
  180. ^ Chen Y, Ma T, Zhang L, Kang M, Zhang Z, Zheng Z, et al. (January 2020). "Genomic analyses of a "living fossil": The endangered dove-tree". Molecular Ecology Resources. 20 (3): 756–769. doi:10.1111/1755-0998.13138. PMID 31970919. S2CID 210865226.
  181. ^ "Mimulus guttatus". Phytozome v9.1. Archived from the original on 16 February 2015.
  182. ^ Cocker JM, Wright J, Li J, Swarbreck D, Dyer S, Caccamo M, et al. (December 2018). "Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene". Scientific Reports. 8 (1): 17942. Bibcode:2018NatSR...817942C. doi:10.1038/s41598-018-36304-4. PMC 6299000. PMID 30560928.
  183. ^ Canales NA, Pérez-Escobar OA, Powell RF, Töpel M, Kidner C, Nesbitt M, et al. (2022-10-06). "A highly contiguous, scaffold-level nuclear genome assembly for the fever tree (Cinchona pubescens Vahl) as a novel resource for Rubiaceae research". Gigabyte. 2022: 1–16. doi:10.46471/gigabyte.71. PMC 10027117. PMID 36950143. S2CID 252810685.
  184. ^ "Details for species Solanum lycopersicum". Sol Genomics Network.
  185. ^ a b Tomato Genome Consortium (May 2012). "The tomato genome sequence provides insights into fleshy fruit evolution". Nature. 485 (7400): 635–41. Bibcode:2012Natur.485..635T. doi:10.1038/nature11119. PMC 3378239. PMID 22660326.
  186. ^ Song B, Song Y, Fu Y, Kizito EB, Kamenya SN, Kabod PN, et al. (2019-10-01). "Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome". GigaScience. 8 (10). doi:10.1093/gigascience/giz115. PMC 6771550. PMID 31574156.
  187. ^ "Spud DB". solanaceae.plantbiology.msu.edu. Retrieved 2019-03-20.
  188. ^ Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, et al. (July 2011). "Genome sequence and analysis of the tuber crop potato". Nature. 475 (7355): 189–95. doi:10.1038/nature10158. PMID 21743474.
  189. ^ Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P, Leisner CP, et al. (February 2016). "Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum". The Plant Cell. 28 (2): 388–405. doi:10.1105/tpc.15.00538. PMC 4790865. PMID 26772996.
  190. ^ Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, et al. (April 2015). "The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives". The Plant Cell. 27 (4): 954–68. doi:10.1105/tpc.114.135954. PMC 4558694. PMID 25873387.
  191. ^ Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, et al. (June 2018). "Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris". Nature Communications. 9 (1): 2515. Bibcode:2018NatCo...9.2515V. doi:10.1038/s41467-018-04344-z. PMC 6023873. PMID 29955043.
  192. ^ Sun G, Xu Y, Liu H, Sun T, Zhang J, Hettenhausen C, et al. (July 2018). "Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis". Nature Communications. 9 (1): 2683. Bibcode:2018NatCo...9.2683S. doi:10.1038/s41467-018-04721-8. PMC 6041341. PMID 29992948.
  193. ^ Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (December 2012). "A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research". Molecular Plant-Microbe Interactions. 25 (12): 1523–30. doi:10.1094/MPMI-06-12-0148-TA. hdl:2434/618758. PMID 22876960.
  194. ^ a b Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, et al. (June 2013). "Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis". Genome Biology. 14 (6): R60. doi:10.1186/gb-2013-14-6-r60. PMC 3707018. PMID 23773524.
  195. ^ Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, et al. (March 2014). "Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species". Nature Genetics. 46 (3): 270–8. doi:10.1038/ng.2877. PMID 24441736.
  196. ^ a b Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. (April 2014). "Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization". Proceedings of the National Academy of Sciences of the United States of America. 111 (14): 5135–40. Bibcode:2014PNAS..111.5135Q. doi:10.1073/pnas.1400975111. PMC 3986200. PMID 24591624.
  197. ^ "The Petunia Platform". Archived from the original on 9 January 2011.
  198. ^ Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. (May 2012). "Reference genome sequence of the model plant Setaria". Nature Biotechnology. 30 (6): 555–61. doi:10.1038/nbt.2196. PMID 22580951.
  199. ^ Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, et al. (November 2017). "Genome sequence of the progenitor of the wheat D genome Aegilops tauschii". Nature. 551 (7443): 498–502. Bibcode:2017Natur.551..498L. doi:10.1038/nature24486. PMC 7416625. PMID 29143815.
  200. ^ De Silva NP, Lee C, Battlay P, Fournier-Level A, Moore JL, Hodgins KA (December 2022). "Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response". GigaScience. 12. doi:10.1093/gigascience/giad034. PMC 10176504. PMID 37171129.
  201. ^ The International Brachypodium Initiative (February 2010). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature. 463 (7282): 763–8. Bibcode:2010Natur.463..763T. doi:10.1038/nature08747. PMID 20148030.
  202. ^ Guo C, Wang Y, Yang A, He J, Xiao C, Lv S, et al. (February 2020). "The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication". Molecular Plant. 13 (2): 309–320. doi:10.1016/j.molp.2019.11.008. PMID 31778843.
  203. ^ Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, et al. (October 2016). "3 panicoid grass species Dichanthelium oligosanthes". Genome Biology. 17 (1): 223. doi:10.1186/s13059-016-1080-3. PMC 5084476. PMID 27793170.
  204. ^ Wang X, Chen S, Ma X, Yssel AE, Chaluvadi SR, Johnson MS, et al. (March 2021). "Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis)". GigaScience. 10 (3). doi:10.1093/gigascience/giab013. PMC 7953496. PMID 33710327.
  205. ^ Carballo J, Santos BA, Zappacosta D, Garbus I, Selva JP, Gallo CA, et al. (July 2019). "A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality". Scientific Reports. 9 (1): 10250. Bibcode:2019NatSR...910250C. doi:10.1038/s41598-019-46610-0. PMC 6629639. PMID 31308395.
  206. ^ Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, et al. (November 2012). "A physical, genetic and functional sequence assembly of the barley genome" (PDF). Nature. 491 (7426): 711–6. Bibcode:2012Natur.491..711T. doi:10.1038/nature11543. hdl:2440/76951. PMID 23075845. S2CID 10170672.
  207. ^ Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. (April 2017). "A chromosome conformation capture ordered sequence of the barley genome". Nature. 544 (7651): 427–433. Bibcode:2017Natur.544..427M. doi:10.1038/nature22043. hdl:2440/106563. PMID 28447635.
  208. ^ Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, et al. (2013). "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution". Nature Communications. 4: 1595. Bibcode:2013NatCo...4.1595C. doi:10.1038/ncomms2596. PMC 3615480. PMID 23481403.
  209. ^ Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, et al. (September 2010). "Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza". The Plant Journal. 63 (6): 990–1003. doi:10.1111/j.1365-313X.2010.04293.x. PMID 20626650. S2CID 8637330.
  210. ^ Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, et al. (October 2012). "A map of rice genome variation reveals the origin of cultivated rice". Nature. 490 (7421): 497–501. Bibcode:2012Natur.490..497H. doi:10.1038/nature11532. PMC 7518720. PMID 23034647.
  211. ^ Eckardt NA (November 2000). "Sequencing the rice genome". The Plant Cell. 12 (11): 2011–7. doi:10.1105/tpc.12.11.2011. PMC 526008. PMID 11090205.
  212. ^ Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science. 296 (5565): 79–92. Bibcode:2002Sci...296...79Y. doi:10.1126/science.1068037. PMID 11935017. S2CID 208529258.
  213. ^ Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science. 296 (5565): 92–100. Bibcode:2002Sci...296...92G. doi:10.1126/science.1068275. PMID 11935018. S2CID 2960202.
  214. ^ "Panicum virgatum". Phytozome v9.1. Archived from the original on 2015-02-19. Retrieved 2013-07-10.
  215. ^ Robbins MD, Bushman BS, Huff DR, Benson CW, Warnke SE, Maughan CA, et al. (January 2023). "Chromosome-Scale Genome Assembly and Annotation of Allotetraploid Annual Bluegrass (Poa annua L.)". Genome Biology and Evolution. 15 (1). doi:10.1093/gbe/evac180. PMC 9838796. PMID 36574983.
  216. ^ a b Benson CW, Sheltra MR, Maughan PJ, Jellen EN, Robbins MD, Bushman BS, et al. (June 2023). "Homoeologous evolution of the allotetraploid genome of Poa annua L". BMC Genomics. 24 (1): 350. doi:10.1186/s12864-023-09456-5. PMC 10291818. PMID 37365554.
  217. ^ Phillips AR, Seetharam AS, Albert PS, AuBuchon-Elder T, Birchler JA, Buckler ES, et al. (June 2023). "A happy accident: a novel turfgrass reference genome". G3. 13 (6). doi:10.1093/g3journal/jkad073. PMC 10234399. PMID 37002915.
  218. ^ Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, et al. (April 2013). "The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)". Nature Genetics. 45 (4): 456–61, 461e1-2. doi:10.1038/ng.2569. PMID 23435089.
  219. ^ Zhao H, Gao Z, Wang L, Wang J, Wang S, Fei B, et al. (October 2018). "Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)". GigaScience. 7 (10). doi:10.1093/gigascience/giy115. PMC 6204424. PMID 30202850.
  220. ^ Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. (January 2009). "The Sorghum bicolor genome and the diversification of grasses". Nature. 457 (7229): 551–6. Bibcode:2009Natur.457..551P. doi:10.1038/nature07723. PMID 19189423. S2CID 4382410.
  221. ^ Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. (International Wheat Genome Sequencing Consortium) (August 2018). "Shifting the limits in wheat research and breeding using a fully annotated reference genome". Science. 361 (6403): 705. doi:10.1126/science.aar7191. hdl:10261/169166. PMID 30115783.
  222. ^ Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. (April 2013). "Draft genome of the wheat A-genome progenitor Triticum urartu". Nature. 496 (7443): 87–90. Bibcode:2013Natur.496...87L. doi:10.1038/nature11997. PMID 23535596.
  223. ^ "Maize Sequence". Gramene.
  224. ^ Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. (November 2009). "The B73 maize genome: complexity, diversity, and dynamics". Science. 326 (5956): 1112–5. Bibcode:2009Sci...326.1112S. doi:10.1126/science.1178534. PMID 19965430. S2CID 21433160.
  225. ^ Varshney RK, Shi C, Thudi M, Mariac C, et al. (September 2017). "Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments". Nature Biotechnology. 35 (10): 969–976. doi:10.1038/nbt.3943. PMC 6871012. PMID 28922347.
  226. ^ a b Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, et al. (December 2015). "The pineapple genome and the evolution of CAM photosynthesis". Nature Genetics. 47 (12): 1435–42. doi:10.1038/ng.3435. PMC 4867222. PMID 26523774.
  227. ^ Wang ZF, Wu LF, Chen L, Zhu WG, Yu EP, Xu FX, et al. (May 2024). "Genome assembly of Ottelia alismoides, a multiple-carbon utilisation aquatic plant". BMC Genomic Data. 25 (1): 48. doi:10.1186/s12863-024-01230-0. PMC 11118731. PMID 38783174.
  228. ^ Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, et al. (January 2024). "A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes)". GigaScience. 13. doi:10.1093/gigascience/giae006. PMC 10938897. PMID 38486346.
  229. ^ D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, et al. (August 2012). "The banana (Musa acuminata) genome and the evolution of monocotyledonous plants". Nature. 488 (7410): 213–7. Bibcode:2012Natur.488..213D. doi:10.1038/nature11241. PMID 22801500.
  230. ^ Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (October 2013). "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics. 14: 683. doi:10.1186/1471-2164-14-683. PMC 3852598. PMID 24094114.
  231. ^ Wang Z, Miao H, Liu J, Yao X, Xu C, Zhao S, et al. (July 2019). "Musa balbisiana genome reveals subgenome evolution and functional divergence". Nature Plants. 1 (8): 810–821. Bibcode:2019NatPl...5..810W. doi:10.1038/s41477-019-0452-6. PMC 6784884. PMID 31308504.
  232. ^ Wang ZF, Rouard M, Droc G, Heslop-Harrison PJ, Ge XJ (December 2022). "Genome assembly of Musa beccarii shows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes". GigaScience. 12. doi:10.1093/gigascience/giad005. PMC 9941839. PMID 36807539.
  233. ^ a b Zhao H, Wang S, Wang J, Chen C, Hao S, Chen L, et al. (September 2018). "The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops jenkinsiana)". GigaScience. 7 (9). doi:10.1093/gigascience/giy097. PMC 6117794. PMID 30101322.
  234. ^ Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, et al. (November 2017). "The genome draft of coconut (Cocos nucifera)". GigaScience. 6 (11): 1–11. doi:10.1093/gigascience/gix095. PMC 5714197. PMID 29048487.
  235. ^ Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, et al. (May 2011). "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)". Nature Biotechnology. 29 (6): 521–7. doi:10.1038/nbt.1860. PMID 21623354.
  236. ^ Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, et al. (August 2013). "Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds". Nature. 500 (7462): 335–9. Bibcode:2013Natur.500..335S. doi:10.1038/nature12309. PMC 3929164. PMID 23883927.
  237. ^ Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, et al. (2014). "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle". Nature Communications. 5: 3311. Bibcode:2014NatCo...5.3311W. doi:10.1038/ncomms4311. PMC 3948053. PMID 24548928.
  238. ^ Sherpa R, Devadas R, Suprasanna P, Bolbhat SN, Nikam TD (2022-08-09). "First De novo whole genome sequencing and assembly of mutant Dendrobium hybrid cultivar 'Emma White'". Gigabyte. 2022: 1–8. doi:10.46471/gigabyte.66. PMC 9694038. PMID 36824506.
  239. ^ Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, et al. (January 2015). "The genome sequence of the orchid Phalaenopsis equestris". Nature Genetics. 47 (1): 65–72. doi:10.1038/ng.3149. hdl:1854/LU-5835763. PMID 25420146.
  240. ^ Bruccoleri RE, Oakeley EJ, Faust AM, Altorfer M, Dessus-Babus S, Burckhardt D, et al. (2023-10-05). "Genome assembly of the bearded iris, Iris pallida Lam". Gigabyte. 2023: 1–10. doi:10.46471/gigabyte.94. ISSN 2709-4715. PMC 10565908. PMID 37829656.
  241. ^ a b Chin KJ, Pirro S (2023-03-05). "The Complete Genome Sequences of Iris sibirica and Iris virginica (Iridaceae, Asparagales)". Biodiversity Genomes. 2023. doi:10.56179/001c.72791. PMC 10019338. PMID 36936674.
  242. ^ a b Islam MS, Saito JA, Emdad EM, Ahmed B, Islam MM, Halim A, et al. (January 2017). "Comparative genomics of two jute species and insight into fibre biogenesis". Nature Plants. 3 (2): 16223. Bibcode:2017NatPl...316223I. doi:10.1038/nplants.2016.223. PMID 28134914.
  243. ^ Sarkar D, Mahato AK, Satya P, Kundu A, Singh S, Jayaswal PK, et al. (June 2017). "Corchorus olitorius cv. JRO-524 (Navin)". Genomics Data. 12: 151–154. doi:10.1016/j.gdata.2017.05.007. PMC 5432662. PMID 28540183.
  244. ^ "Welcome to the British Ash Tree Genome Project". The British Ash Tree Genome Project. The School of Biological & Chemical Sciences.
  245. ^ Heap T (2013-06-16). "Ash genome reveals fungus resistance". BBC News.