Jump to content

Solar eclipse of January 5, 2038

From Wikipedia, the free encyclopedia
Solar eclipse of January 5, 2038
Map
Type of eclipse
NatureAnnular
Gamma0.4169
Magnitude0.9728
Maximum eclipse
Duration198 s (3 min 18 s)
Coordinates2°06′N 25°24′W / 2.1°N 25.4°W / 2.1; -25.4
Max. width of band107 km (66 mi)
Times (UTC)
Greatest eclipse13:47:11
References
Saros132 (47 of 71)
Catalog # (SE5000)9592

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038,[1] with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.8 days after perigee (on December 29, 2037, at 18:50 UTC) and 7 days before apogee (on January 12, 2038, at 14:00 UTC).[2]

Annularity will be visible from parts of Cuba, Haiti, the Dominican Republic, Saint Lucia, Saint Vincent and the Grenadines, Barbados, Liberia, Côte d'Ivoire, Ghana, Togo, Benin, northwestern Nigeria, Niger, Chad, southeastern Libya, northwestern Sudan, and southwestern Egypt. A partial eclipse will be visible for parts of eastern North America, Central America, the Caribbean, northern South America, Europe, and the northern two-thirds of Africa.

Images

[edit]


Animated path

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

January 5, 2038 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2038 January 05 at 11:00:02.2 UTC
First Umbral External Contact 2038 January 05 at 12:04:34.3 UTC
First Central Line 2038 January 05 at 12:06:00.3 UTC
First Umbral Internal Contact 2038 January 05 at 12:07:26.6 UTC
First Penumbral Internal Contact 2038 January 05 at 13:31:44.8 UTC
Ecliptic Conjunction 2038 January 05 at 13:42:33.7 UTC
Greatest Eclipse 2038 January 05 at 13:47:10.9 UTC
Equatorial Conjunction 2038 January 05 at 13:47:52.0 UTC
Greatest Duration 2038 January 05 at 13:53:53.7 UTC
Last Penumbral Internal Contact 2038 January 05 at 14:02:34.7 UTC
Last Umbral Internal Contact 2038 January 05 at 15:26:52.5 UTC
Last Central Line 2038 January 05 at 15:28:21.8 UTC
Last Umbral External Contact 2038 January 05 at 15:29:50.8 UTC
Last Penumbral External Contact 2038 January 05 at 16:34:26.0 UTC
January 5, 2038 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.97279
Eclipse Obscuration 0.94632
Gamma 0.41689
Sun Right Ascension 19h06m27.4s
Sun Declination -22°33'17.3"
Sun Semi-Diameter 16'15.9"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 19h06m25.9s
Moon Declination -22°09'29.7"
Moon Semi-Diameter 15'35.7"
Moon Equatorial Horizontal Parallax 0°57'13.9"
ΔT 77.6 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of January 2038
January 5
Descending node (new moon)
January 21
Ascending node (full moon)
Annular solar eclipse
Solar Saros 132
Penumbral lunar eclipse
Lunar Saros 144
[edit]

Eclipses in 2038

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 132

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2036–2039

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on February 27, 2036 and August 21, 2036 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2036 to 2039
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 July 23, 2036

Partial
−1.425 122 January 16, 2037

Partial
1.1477
127 July 13, 2037

Total
−0.7246 132 January 5, 2038

Annular
0.4169
137 July 2, 2038

Annular
0.0398 142 December 26, 2038

Total
−0.2881
147 June 21, 2039

Annular
0.8312 152 December 15, 2039

Total
−0.9458

Saros 132

[edit]

This eclipse is a part of Saros series 132, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146; hybrid eclipses on March 23, 2164 and April 3, 2182; and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 25 at 6 minutes, 56 seconds on May 9, 1641, and the longest duration of totality will be produced by member 61 at 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 34–56 occur between 1801 and 2200:
34 35 36

August 17, 1803

August 27, 1821

September 7, 1839
37 38 39

September 18, 1857

September 29, 1875

October 9, 1893
40 41 42

October 22, 1911

November 1, 1929

November 12, 1947
43 44 45

November 23, 1965

December 4, 1983

December 14, 2001
46 47 48

December 26, 2019

January 5, 2038

January 16, 2056
49 50 51

January 27, 2074

February 7, 2092

February 18, 2110
52 53 54

March 1, 2128

March 12, 2146

March 23, 2164
55 56

April 3, 2182

April 14, 2200

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 1, 2011 and October 24, 2098
May 31–June 1 March 19–20 January 5–6 October 24–25 August 12–13
118 120 122 124 126

June 1, 2011

March 20, 2015

January 6, 2019

October 25, 2022

August 12, 2026
128 130 132 134 136

June 1, 2030

March 20, 2034

January 5, 2038

October 25, 2041

August 12, 2045
138 140 142 144 146

May 31, 2049

March 20, 2053

January 5, 2057

October 24, 2060

August 12, 2064
148 150 152 154 156

May 31, 2068

March 19, 2072

January 6, 2076

October 24, 2079

August 13, 2083
158 160 162 164

June 1, 2087

October 24, 2098

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

October 19, 1808
(Saros 111)

September 19, 1819
(Saros 112)

August 18, 1830
(Saros 113)

July 18, 1841
(Saros 114)

June 17, 1852
(Saros 115)

May 17, 1863
(Saros 116)

April 16, 1874
(Saros 117)

March 16, 1885
(Saros 118)

February 13, 1896
(Saros 119)

January 14, 1907
(Saros 120)

December 14, 1917
(Saros 121)

November 12, 1928
(Saros 122)

October 12, 1939
(Saros 123)

September 12, 1950
(Saros 124)

August 11, 1961
(Saros 125)

July 10, 1972
(Saros 126)

June 11, 1983
(Saros 127)

May 10, 1994
(Saros 128)

April 8, 2005
(Saros 129)

March 9, 2016
(Saros 130)

February 6, 2027
(Saros 131)

January 5, 2038
(Saros 132)

December 5, 2048
(Saros 133)

November 5, 2059
(Saros 134)

October 4, 2070
(Saros 135)

September 3, 2081
(Saros 136)

August 3, 2092
(Saros 137)

July 4, 2103
(Saros 138)

June 3, 2114
(Saros 139)

May 3, 2125
(Saros 140)

April 1, 2136
(Saros 141)

March 2, 2147
(Saros 142)

January 30, 2158
(Saros 143)

December 29, 2168
(Saros 144)

November 28, 2179
(Saros 145)

October 29, 2190
(Saros 146)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

June 16, 1806
(Saros 124)

May 27, 1835
(Saros 125)

May 6, 1864
(Saros 126)

April 16, 1893
(Saros 127)

March 28, 1922
(Saros 128)

March 7, 1951
(Saros 129)

February 16, 1980
(Saros 130)

January 26, 2009
(Saros 131)

January 5, 2038
(Saros 132)

December 17, 2066
(Saros 133)

November 27, 2095
(Saros 134)

November 6, 2124
(Saros 135)

October 17, 2153
(Saros 136)

September 27, 2182
(Saros 137)

References

[edit]
  1. ^ "January 5, 2038 Annular Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
  3. ^ "Annular Solar Eclipse of 2038 Jan 05". EclipseWise.com. Retrieved 14 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 132". eclipse.gsfc.nasa.gov.
[edit]